
Université Paris Est Créteil
Laboratoire d’Analyse et Mathématiques Appliquées

Mémoire présenté pour l’obtention du
Diplôme d’habilitation à diriger les recherches

par Ilaria Mondello

SINGULARITIES AND WEAK CURVATURE BOUNDS

Soutenue le 5 mars 2025 devant le jury composé de

Laurent BESSIÈRES, Université de Bordeaux (Rapporteur)
Karl-Theodor STURM, Universität Bonn (Rapporteur)
Guofang WEI, University of California Santa Barbara (Rapporteure)
Gérard BESSON Université Grenoble Alpes (Examinateur)
Nadine GROSSE Universität Freiburg (Examinatrice)
Hans-Joachim HEIN Universität Münster (Examinateur)
Paul LAURAIN Université Gustave Eiffel (Examinateur)
Sylvain MAILLOT Université de Montpellier (Examinateur)





Acknowledgments
I am very grateful to Laurent Bessières, Karl-Theodor Sturm and Guofang Wei for
accepting to be referees for the present memoir, for their suggestions and careful
reading. I also thank Gérard Besson, Nadine Grosse, Hans-Joachim Hein and Paul
Laurain for participating in my habilitation jury.

The work that I have done since the end of my Ph.D. would not have been possible
without being part of a supporting community. I thank all the collaborators who have
worked with me during this research journey, for sharing knowledge, learning from one
another, making progress together. I thank the anonymous colleague who suggested my
name to give a Bourbaki seminar: it was the starting point of an adventure through
limits of manifolds that I am grateful I have been sharing with Gilles Carron and David
Tewodrose.

During the last ten years, I had the opportunity to visit many places perfectly fit
for focusing on research. I am particularly grateful for the time I spent in Bonn, at the
Max Planck Institut and at the Universität Bonn, thanks to Theo Sturm, at the Fields
Institute in Toronto, in Oberwolfach, at Technion in Haifa, thanks to Baptiste Devyver,
at SLMath in Berkeley. Thanks to all the colleagues that give plenty of their time
to organise interesting conferences, semesters, mini-courses, real boosters to start new
research and learn new mathematics. Thanks to Raquel Perales for being a frequent
and very good companion at all of these events, and for all of our discussions. Thanks
to Federica for organising with me the Colloque de Géométrie in Créteil, and to Alix
and Hugues for the many geometry days we have organised together. I am also grateful
to the many geometers that participate in the ANR project OrbiScaR: I am looking
forward to our future meetings, summer schools and exciting new mathematics.

Thanks to Federica and Aurelia for all of our discussions about working at UPEC
and being a woman mathematician, to Benoît for his constant and warm support since
I arrived in Créteil, to François and Hajer for giving me the idea to take up a challenge
years before I thought I would be up to it. Thanks to Sonia for her wonderful efficiency,
for her crêpes and baklava, and most of all for her smile despite all administrative
obstacles.

I am grateful to my parents and my sister from their constant support. Finally, a
huge thanks to Vincent, who encourages me through everything, and Joan: you two fill
my life with light every day.

iii



Acknowledgments

iv



Contents

Introduction 1

1 The Yamabe problem on stratified spaces 9
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Einstein metrics and regularity of a Yamabe minimizer . . . . . . . . . . . 13
1.3 An Obata-type result for stratified spaces . . . . . . . . . . . . . . . . . . 15
1.4 Non-existence of Yamabe metrics . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Geometric aspects of RCD spaces 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Minimal background on RCD spaces . . . . . . . . . . . . . . . . . . . . . 23
2.3 RCD stratified spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 A torus stability result for RCD spaces . . . . . . . . . . . . . . . . . . . . 28
2.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Limits of manifolds with a Kato bound on the Ricci curvature 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Kato potentials in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Kato bounds on manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 From Kato to RCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Consequences on Dynkin and Kato limits . . . . . . . . . . . . . . 45
3.5.2 Consequences on manifolds . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Strategies of chosen proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6.1 The Li-Yau inequality . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6.2 PI-Dirichlet spaces, energy and heat kernel convergence . . . . . . 49
3.6.3 Energy convergence for Kato limits . . . . . . . . . . . . . . . . . . 51
3.6.4 Strong Kato bound, monotone quantities and regularity . . . . . . 53

3.7 A geometric application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

v



Contents

vi



Singularités et contraintes de
courbure faibles

Le présent mémoire d’habilitation vise à décrire les travaux de recherche que j’ai ef-
fectués après mon doctorat, dans le domaine de l’analyse géométrique. Je m’intéresse
à l’étude géométrique, analytique et topologique d’espaces singuliers pour lesquels on
dispose d’une information sur la courbure, en me servant d’outils qui proviennent de
l’analyse, de la géométrie riemannienne et de la géométrie métrique, comme les opéra-
teurs de Schrödinger, le noyau de la chaleur, la convergence de Gromov-Hausdorff, les
espaces de Dirichlet, l’inégalité de Bochner.

Une question naturelle au cœur de la géométrie moderne est celle de comprendre les
conséquences d’une borne sur la courbure. D’importants résultats de géométrie rieman-
nienne pour les variétés lisses, et plus récemment dans le cadre des espaces métriques
ou métriques mesurés, ont permis d’obtenir une bonne compréhension des implications
d’une minoration de la courbure sectionnelle ou de Ricci. Néanmoins, dans de nom-
breuses situations géométriques, un contrôle de l’une de ces deux courbures n’est pas
satisfait et représenterait une hypothèse supplémentaire trop restrictive. C’est le cas par
exemple dans l’étude des flots géométriques et de leurs singularités, dans celle des pro-
blèmes variationnels de minimisation, ou encore dans l’étude des espaces de modules. De
plus, dans ces problèmes, un passage à la limite dans la topologie appropriée est souvent
nécessaire, ce qui engendre généralement des singularités. Un problème fondamental de
la géométrie actuelle consiste donc à comprendre des bornes de courbure moins contrai-
gnantes et à élargir le cadre des objets étudiés, en incluant des variétés singulières. Une
motivation supplémentaire pour l’étude des singularités, et en particulier des singulari-
tés coniques, est qu’en plus de représenter un sujet intéressant en lui-même, elles jouent
un rôle central dans les résolutions récentes de plusieurs conjectures géométriques. Par
exemple, la preuve de la géométrisation des variétés de dimension 3 conjecturée par
W. Thurston nécessite l’étude de singularités orbifolds et des singularités du flot de
Ricci, comme montré par G. Perelman. L’existence de métriques de Kähler-Einstein à
singularités coniques le long d’une sous-variété de codimension 2 est cruciale pour la
démonstration de l’existence de métriques de Kähler-Einstein sur une variété de Fano
par X. X. Chen, S. Donaldson et S. Sun.

Mes travaux se situent dans ce contexte et visent à élargir la compréhension d’objets
singuliers, provenant de limites de variétés ou non, en présence d’une contrainte sur la
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Introduction

courbure scalaire ou sur celle de Ricci. Il s’agit de contraintes “faibles” en plusieurs sens.
Premièrement, la courbure scalaire est la plus faible parmi les courbures riemanniennes :
sous un contrôle de la courbure scalaire, de nombreuses questions restent ouvertes à la fois
dans le cadre lisse et singulier. Pour ce qui concerne la courbure de Ricci, je m’intéresse
d’un coté à une notion généralisée aux espaces métriques mesurés de courbure de Ricci
minorée, et d’un autre à des conditions intégrales qui affaiblissent cette minoration pour
étudier des limites de Gromov-Hausdorff de variétés lisses.

Je donne ici une présentation (presque) chronologique de mes travaux principaux : le
point de départ de ma recherche a été l’étude d’un problème d’analyse géométrique, le
problème de Yamabe, sur des variétés à singularités coniques itérées. Certains résultats
que j’ai prouvés dans ce cadre, sous l’hypothèse que la courbure de Ricci est minorée en
dehors des singularités, m’ont menée ensuite vers l’étude de la théorie des espaces RCD,
c’est-à-dire des espaces métriques mesurés pour lesquels on dispose d’une notion synthé-
tique de courbure de Ricci minorée et de dimension majorée, due à J. Lott, K. T. Sturm
et C. Villani. Une minoration synthétique de la courbure de Ricci avait été préconisée
par J. Cheeger suite à ses travaux en collaboration avec T. H. Colding sur les limites de
Gromov-Hausdorff de variétés lisses à courbure de Ricci minorée : je me suis donc na-
turellement intéressée à ce qu’on appelle désormais la théorie de Cheeger-Colding. Cela
m’a permis d’étudier des contraintes de courbure intégrales et plus faibles, les bornes de
Kato, pour des suites de variétés lisses. Chaque chapitre de ce mémoire est dédié à l’un
de ces axes de recherche : je présente brièvement comment mes travaux s’inscrivent dans
la littérature, mes résultats principaux et les stratégies de leurs preuves, en illustrant des
perspectives de recherche pour le travail futur. Je donne relativement peu de prélimi-
naires, supposant le lecteur à l’aise avec les notions de base de géométrie riemannienne
et d’analyse sur les variétés.

Dans le premier chapitre, je décris les résultats obtenus dans [Mon18] et en col-
laboration avec K. Akutagawa dans [AM22] concernant le problème de Yamabe sur
les variétés à singularités coniques itérées, ou autrement dit, les espaces stratifiés. Ce
problème consiste à trouver une métrique à courbure scalaire constante dans la classe
conforme d’une métrique fixée. Une métrique conforme qui minimise la courbure scalaire
totale, c’est-à-dire l’intégrale de la courbure scalaire sur la variété, parmi les métriques
conformes de volume unitaire est une métrique à courbure scalaire constante et s’ap-
pelle métrique de Yamabe. Dans le cas des variétés compactes lisses, une métrique de
Yamabe existe toujours, et toute métrique d’Einstein est une métrique de Yamabe. Pour
les espaces stratifiés, la situation est plus complexe : dans [Mon18], j’ai montré comment
certains résultats connus pour les variétés lisses restent vrais si l’angle le long des sin-
gularités de codimension 2 est inférieur à 2π. Si l’angle est supérieur à 2π, nous avons
construit avec K. Akutagawa [AM22] des exemples de métriques d’Einstein singulières
qui ne sont pas minimisantes et qui ne contiennent dans leur classe conforme aucune
métrique de Yamabe.

Le deuxième chapitre de ce mémoire est dédié à certains aspects géométriques des
espaces RCD. La théorie des bornes de Ricci synthétiques a débuté avec l’introduction
de la condition de courbure-dimension CD(K,N) par K. T. Sturm et J. Lott et C. Vil-
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lani à l’aide du transport optimal de mesures. L. Ambrosio, N. Gigli et G. Savaré ont
ensuite peaufiné cette définition en introduisant les espaces RCD, qui satisfont une hy-
pothèse analytique supplémentaire excluant les variétés Finsleriennes. De plus, dans les
espaces RCD, une inégalité de Bakry-Émery, qui étend l’inégalité classique de Bochner
est vérifiée. Dans ce cadre, je me suis intéressée en particulier à créer un pont entre
la théorie RCD et l’étude des variétés singulières, en fournissant une classe d’exemples
d’espaces stratifiés qui sont RCD, dans un travail en commun avec J. Bertrand, C. Ket-
terer et T. Richard [BKMR21]. La théorie des espaces RCD a été très récemment utilisée
dans l’étude des variétés singulières qui ne sont pas forcément limites de variétés, par
exemple dans les travaux récents de G. Székelyhidi [Sze24], ou X. Dai, Y. Sun et C. Wang
[DSW24b] et X. Dai, C. Wang, L. Wang et G. Wei [DWWW24]. Dans ce chapitre, je pré-
sente également un résultat de stabilité du tore obtenu en collaboration avec A. Mondino
et R. Perales [MMP22], qui éclaire certaines propriétés topologiques des espaces RCD.

La dernier chapitre présente mes travaux en collaboration avec G. Carron et D. Te-
wodrose concernant les limites de Gromov-Hausdorff de variétés dont la courbure de
Ricci satisfait des bornes de Kato. Dans le cas ou la courbure de Ricci est minorée, les
espaces limites obtenus par convergence de Gromov-Hausdorff ont été l’objet de l’étude
de nombreux mathématiciens dès la démonstration du théorème de pré-compacité de
M. Gromov dans les années 1980. Très récemment, J. Cheeger, W. Jiang et A. Naber
ont résolu de nombreuses conjectures qui avaient été formulées dans ce domaine au cours
des années 1990. Comme expliqué ci-dessus, l’hypothèse de courbure de Ricci minorée
peut être trop contraignante dans certaines situations, et le but de notre travail avec
G. Carron et D. Tewodrose est d’affaiblir cette condition tout en obtenant des résul-
tats de structure et de régularité sur les limites. Une façon de considérer la minoration
sur la courbure de Ricci consiste à observer qu’en coordonnées harmoniques, le tenseur
de Ricci peut s’écrire comme l’opposé du Laplacien de la métrique, auquel s’ajoutent
des termes d’erreurs quadratiques en la métrique et ses dérivées. Une minoration de
la courbure de Ricci par une constante correspond donc, en termes analytiques, à une
majoration du Laplacien de la métrique. Il est alors naturel de remplacer l’opérateur
laplacien par un opérateur de Schrödinger, c’est-à-dire le laplacien auquel on retranche
un potentiel choisi de façon à contenir les informations nécessaires sur la courbure.
Dans [CMT24, CMT22, CMT23b, CMT23a] nous avons utilisé comme potentiel la par-
tie négative de la courbure de Ricci et supposé qu’elle vérifie une condition inspirée par
les potentiels de Kato dans Rn, tels que définis par T. Kato et étudiés par B. Simon
[Kat72, Sim82]. Nous avons ainsi obtenu une théorie de la régularité qui englobe la cé-
lèbre théorie de Cheeger-Colding pour les limites à courbure de Ricci minorée et dont je
présente ici les grandes lignes.
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Singularities and weak curvature
bounds

The present memoir aims to describe the research I conducted after my Ph.D., in the
domain of geometric analysis. I am interested in the geometric, analytic and topological
study of singular spaces for which a control on the curvature is assumed, using tools that
come from analysis, Riemannian geometry and metric geometry, such as Schrödinger
operators, the heat kernel, Gromov-Hausdorff convergence, Dirichlet spaces, Bochner
inequality.

A natural question at the heart of modern geometry consists in understanding the
consequences of a bound on the curvature. Important results of Riemannian geometry
for smooth manifolds, and more recently in the settings of metric and metric measure
spaces, have provided a good comprehension of the implications of a lower bound on the
sectional or Ricci curvature. Nevertheless, in many geometric situations in the current
research, a bound on one of those curvatures is not satisfied and would represent a too
restrictive additional assumption. This is the case for instance in the study of geometric
flows and of their singularities, in the study of variational minimization problems, or
in the one of moduli spaces. Moreover, in these problems, it is often necessary to use
convergence in the appropriate topology, and this leads to singularities. Therefore, a
fundamental question in recent geometry is to understand less restrictive bounds on
the curvature and to enlarge the setting of the objects that are taken into account, by
including singular manifolds. A further motivation for the study of singularities, and in
particular of conical singularities, in addition to being an interesting subject of study
on its own, is that they play a central role in the recent resolution of several geometric
conjectures. For instance, the proof of Geometrization of 3-manifolds conjectured by
W. Thurston uses orbifolds singularities and the study of singularities of the Ricci flow
by G. Perelman. The starting point for the demonstration of the existence of Kähler-
Einsten metrics on Fano manifolds due to X. X. Chen, S. Donaldson et S. Sun is the
existence of Kähler-Einsten metrics with conical singularities along a codimension 2
submanifold.

My work belongs to this context and aims to enlarge the understanding of singular
objects, either coming from limits of smooth manifolds or not, in presence of a bound on
the scalar or Ricci curvature. These are “weak” curvature bounds in several meanings.
First of all, scalar curvature is the weakest among Riemannian curvatures: under a bound
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on the scalar curvature, many questions are still open, both in the smooth and singular
settings. As for the Ricci curvature, I am interested on one hand in a generalized notion
of a lower Ricci bound for metric measure spaces, and on the other hand in integral
conditions that weaken this lower bound in order to study Gromov-Hausdorff limits of
smooth manifolds.

I give here a (mainly) chronological presentation of the principal elements of my
work: the starting point of my research was the study of a geometric analysis problem,
the Yamabe problem, in presence of iterated conical singularities. Some of the results
that I have proven in this setting, under the assumption that the Ricci curvature is
bounded from below away from the singularities, led me to study the theory of RCD
spaces, that is, metric measure spaces for which a synthetic notion of a Ricci lower
bound and an upper bound on the dimension is known, thanks to the work of J. Lott,
K. T. Sturm and C. Villani. The definition of a generalized lower bound for the Ricci
curvature was encouraged by J. Cheeger, motivated by his work in collaboration with
T. H. Colding on Gromov-Hausdorff limits of smooth manifolds with Ricci curvature
bounded from below: I got naturally interested in the so-called Cheeger-Colding theory.
This led me to study weaker integral curvature bounds, Kato bounds, for sequences
of smooth manifolds. Each chapter of this memoir is devoted to one of these research
directions: I briefly present how my work relates to the literature, my main results and
the strategies of their proofs, and illustrate some perspectives for future developments. I
give relatively few preliminaries, assuming the reader to be familiar with basics notions
of Riemannian geometry and analysis on manifolds.

In the first chapter, I describe the results obtained in [Mon18] and in collaboration
with K. Akutagawa [AM22] concerning the Yamabe problem on manifolds with iterated
conical singularities, that is, stratified spaces. This problem consists in finding a par-
ticular metric of constant scalar curvature in the conformal class of a given metric. A
conformal metric which minimizes the total scalar curvature among the unit volume con-
formal metrics has constant scalar curvature and is called a Yamabe metric. In the case
of compact smooth manifolds, a Yamabe metric always exists, and an Einstein metric is
a Yamabe metric. As for stratified spaces, the situation is more involved: in [Mon18],
I showed how some results for smooth manifolds hold in presence of singularities if the
angle along the codimension 2 stratum is not larger than 2π. If the angle is larger than
2π, with K. Akutagawa in [AM22] we constructed examples of singular Einstein metrics
that are not minimizing and do not contain any Yamabe metric in their conformal class.

The second chapter of this memoir is devoted to geometric aspects of RCD spaces.
The theory of synthetic Ricci lower bounds started with the introduction of the
curvature-dimension condition CD(K,N) by K. T. Sturm and J. Lott and C. Villani, us-
ing optimal transport of measures. L. Ambrosio, N. Gigli and G. Savaré later refined this
definition by introducing RCD spaces, which satisfy an additional analytic assumption
excluding Finsler manifolds. Moreover, RCD spaces carry a Bakry-Éméry inequality,
which extends the classical Bochner inequality. In this setting, I got interested in partic-
ular in creating a bridge between the RCD theory and the study of singular manifolds,
by giving a class of examples of stratified spaces that are RCD, in a collaboration with
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J. Betrand, C. Ketterer and T. Richard [BKMR21]. The theory of RCD spaces has been
very recently applied to singular manifolds that are not necessarily limits of smooth man-
ifolds, for instance in the recent work by G. Székelyhidi [Sze24], or by X. Dai, Y. Sun et
C. Wang [DSW24b] and by X. Dai, C. Wang, L. Wang et G. Wei [DWWW24]. I also
present in this chapter a torus stability result obtained in collaboration with A. Mondino
and R. Perales [MMP22], which enlightens some topological properties of RCD spaces.

The last chapter presents my work in collaboration with G. Carron and D. Tewodrose
concerning Gromov-Hausdorff limits of manifolds whose Ricci curvature satisfies a Kato
bound. In the case of a lower bound on Ricci, the limit spaces obtained by Gromov-
Hausdorff convergence have been the object of study of many mathematicians since the
proof of M. Gromov’s pre-compactness theorem in the 1980s. Very recently, J. Cheeger,
W. Jiang and A. Naber solved many of the conjectures that had been formulated in
this domain during the 1990s. As explained above, the assumption of having a uniform
lower Ricci bound can be too restrictive in several geometric situations, and the goal
of our work with G. Carron and D. Tewodrose is to weaken this hypothesis while still
obtaining structure and regularity results for the limit spaces. One way to consider the
lower bound on the Ricci curvature consists in observing that, in harmonic coordinates,
the Ricci tensor can be written as the opposite of the Laplacian of the metric, plus some
quadratic error terms which depend on the metric and its derivatives. Therefore, a lower
bound on the Ricci curvature corresponds, in analytic terms, to an upper bound on the
Laplacian of the metric. As a consequence, it is natural to replace the Laplacian by a
Schrödinger operator, that is, the Laplacian minus an appropriate potential containing
enough information on the curvature. In [CMT24, CMT22, CMT23b, CMT23a] we used
the negative part of the Ricci curvature as a potential and assumed that it satisfies a
condition inspired by Kato potentials in Rn, as introduced by T. Kato and studied by
B. Simon [Kat72, Sim82]. In this way, we obtained a regularity theory that recovers,
under a much weaker assumption, the celebrated Cheeger-Colding theory for limits of
manifolds with a lower Ricci bound: I present its main lines in this memoir.
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Chapter 1

The Yamabe problem on
stratified spaces

This chapter is devoted the presentation of the results concerning the Yamabe problem
on compact stratified spaces that we have obtained in [Mon18] and in collaboration with
K. Akutagawa in [AM22].

1.1 Introduction
The Yamabe problem on a smooth compact manifold (Mn, g) of dimension n ≥ 3 consists
in finding a metric of constant scalar curvature in the conformal class of g, that is,

[g] = {g̃ = u
4

n−2 g, u ∈ C∞(M)}.
Since the work of H. Yamabe in the 1960s, it is known that if a metric in the conformal
class is a minimizer for the Hilbert-Einstein functional

E : g 7→
an

ˆ
M
Sg dvg

volg(M)
n−2

n

, an = n− 2
4(n− 1) ,

then it has constant scalar curvature. We refer to such a minimizer as a Yamabe metric.
The existence of a Yamabe metric for any compact smooth manifold has been proven
thanks to the work of N. Trudinger, T. Aubin and R. Schoen: their arguments rely on
the study of a conformal invariant, the Yamabe constant

Y (M, [g]) = inf
g̃∈[g]

E(g̃).

By using the transformation laws under conformal change for the scalar curvature and the
volume, and the fact that Sobolev functions are dense in C∞(M), the Yamabe constant
can also be written as follows:

Y (M, [g]) = inf
u∈W 1,2(M),u̸=0

ˆ
M

(|du|2 + anSgu) dvg

∥u∥2
2n

n−2

.

9



Chapter 1. The Yamabe problem on stratified spaces

We refer to

Qg(u) =

ˆ
M

(|du|2 + anSgu) dvg

∥u∥2
2n

n−2

,

as the Yamabe functional. If g̃ = u
4

n−2 g is a Yamabe metric, the function u is called a
Yamabe minimizer and it solves the Yamabe equation:

∆gu+ anSgu = Ynu
n+2
n−2 ,

where Yn = Y (Sn, g0) is the Yamabe constant of the round sphere (Sn, g0). If the
Yamabe constant Y (M, [g]) is non-positive, N. Trudinger [Tru68] showed that there
exists a unique Yamabe metric in the conformal class [g]. T. Aubin [Aub76b] proved
what is now generally called the “Aubin’s inequality”, that is, for any compact manifold
(Mn, g) the Yamabe constant is smaller than or equal to Yn; moreover, he showed that
if the inequality is strict, then a Yamabe metric does exist. He then showed the strict
inequality Y (Mn, [g]) < Yn in dimension n ≥ 6 and if g is not locally conformally flat.
In the remaining cases, that is, in low dimension n = 3, 4, 5 and for locally conformally
flat metrics, R. Schoen [Sch84] used the positive mass theorem obtained with S T. Yau
[SY79, SY81], in order to show that either Y (M, [g]) < Yn or the manifold is conformally
equivalent to the round sphere, whose round metric is a Yamabe metric.

The study of the Yamabe problem in presence of isolated conical singularities goes
back to the work of K. Akutagawa and B. Botvinnik [AB04] and of J. Viaclovsky [Via10],
where they considered the case of orbifolds. These are topological spaces locally modelled
on the quotient of the Euclidean space by an isometry subgroup. One of the easiest
examples of orbifold is the so-called American football, which is the quotient of the
sphere S2 by a group Z/qZ. It carries two isolated conical singularities of angle 2π/q at
the fixed points points of Z/qZ. For an orbifold singularity modelled on Rn/Γ, we refer
to Γ as the local group of the singularity. A first difference with respect to the smooth
case is that a generalized Aubin’s inequality hold, where the Yamabe constant of the
sphere is replaced by the orbifold Yamabe constant, which takes into account the angle
of the singularities. The existence of a Yamabe metric is proven in [AB04] when the
inequality is strict. However, in case of equality, a Yamabe metric does not necessarily
exist. Indeed, J. Viaclovsky [Via10] constructed examples of orbifolds carrying a constant
scalar curvature metric whose conformal class does not contain a Yamabe metric: these
are obtained as orbifold conformal compactifications of 4-dimensional Einstein, almost
locally Euclidean, hyper-Kähler manifolds.

In [ACM14, ACM15], K. Akutagawa, G. Carron and R. Mazzeo considered the more
general case of stratified spaces, that carry iterated edge singularities: roughly speaking,
these are singularities of codimension at least 2, modelled on the product of the Euclidean
space Rj and a truncated cone over a link Z, which can be a compact smooth manifold
or a stratified space as well. A stratified space X is composed of a regular dense set
Xreg, an open smooth manifold of dimension n, and of singular strata Σj : each stratum
contains the singularities of the same dimension j ∈ {0, . . . , n− 2}. As an example, the
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spherical suspension of an American football is a stratified space of dimension 3 with
singularities of codimension 3 and of codimension 2: a neighbourhood of the first looks
like a cone over the American football itself, while in the second case the model is the
product of an interval and a cone over a circle. An iterated edge metric g on a stratified
is defined by induction on the dimension of the space, and around a point in Σj , it is
asymptotic to

g0,j = dx2 + dr2 + r2hj ,

where dx2 is the Euclidean metric on Rj and hj is an iterated edge metric on the link
Zj . For the interested reader, we refer to [ACM14, ALMP12, Mon15, Mon17, BKMR21]
for the precise definitions and the basic analytic tools on compact stratified spaces. In
this setting, a constant scalar curvature metric has constant scalar curvature on the
regular set, and a Yamabe metric in the conformal class of an iterated edge metric g is
of the form g̃ = u

4
n−2 g, where u is a weak solution of the Yamabe equation and a strong

solution on Xreg. As in the case of orbifolds, in order to prove existence of a Yamabe
metric it is necessary to introduce a new conformal invariant: this was done in [ACM14],
where the local Yamabe constant is defined. One considers the Yamabe constant of a ball
Y (B(p, r)) by taking the infimum of the Yamabe functional Qg over Sobolev functions
with compact support on B(p, r) ∩Xreg, then defines

Yℓ(X, [g]) = inf
p∈X

lim
r→0

Y (B(p, r)).

The limit in the right-hand side is equal to the Yamabe constant of the sphere Yn for
any smooth point. K. Akutagawa and B. Botvinnik showed that for an isolated orbifold
singularity with group Γ, it is equal to Yn/|Γ|, where |Γ| is the order of the group.
For a point in the stratum of dimension j and link Z, it is the Yamabe constant of
the product Rj × C(Z) with the metric g0,j . The work [ACM14] showed existence of
a Yamabe metric on a stratified space if the Yamabe constant is strictly smaller than
the local one. However, in most cases the explicit value of the local Yamabe constant
is unknown. One of the main results of my Ph.D. thesis [Mon15, Mon17] was to obtain
the value of the local Yamabe constant whenever each link of the singularities carries an
Einstein metric. More precisely:

Theorem 1.1. Let (X, g) be a compact stratified space with links (Zj , hj), j = 1, . . . , N
of dimension dj. Assume that for any j, the iterated edge metric hj is such that Richj

=
dj − 1 on the regular set of Zj. Then the local Yamabe constant of X is given by

Yℓ(X, [g]) = inf
j=1,...,N

Yn,

(
volhj

(Zj)
vol(Sdj )

) 2
n

Yn

 .
This generalized the work of K. Akutagawa and B. Botvinnik [AB04] and of J. Petean

[Pet09], where the Yamabe constant of cones over a compact smooth manifold (Mn, g)
with Ricg ≥ n − 1 is computed. The previous result showed in particular that in pres-
ence of one codimension 2 stratum of angle α, the local Yamabe constant is given by
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Chapter 1. The Yamabe problem on stratified spaces

(α/2π)
2
nYn if α ∈ (0, 2π) and by Yn otherwise. This has several consequences. First,

the proof in case of angle α < 2π relies on an optimal Sobolev inequality which directly
implies a lower bound for the Yamabe constant, attained in the case of an Einstein
metric: therefore, on a stratified space (X, g) with codimension 2 singularity of angle
α < 2π, if the metric g is Einstein, then it is a Yamabe metric, even in presence of higher
codimension strata. Nevertheless, an Einstein metric on a compact stratified space is
not always a Yamabe metric. Consider α > 0, a = α/2π and the product

X =
(

0, π2

)
× Sn−2 × S1,

endowed with the Einstein metric

ha = dρ2 + sin2(ρ)gSn−2 + a2 cos2 ρ dθ2.

The completion of X with respect to the metric ha, denoted by Sn
a , is a round sphere

with an edge-cone singularity of angle α along a codimension 2 circle. It can also be seen
as the conformal compactification of the product Rn−2 ×C(S1

a). It is easy to show that
the Hilbert-Einstein functional computed on ha gives (α/2π)

2
nYn, which is strictly larger

than Yn if α > 2π. Therefore, in this latter case ha is an Einstein metric without being
a minimizer for the Einstein-Hilbert functional. However, not everything goes wrong in
the case of angles larger than 2π. Let (Xn, g) be a compact stratified space of dimension
larger than 6, such that g is not locally conformally flat and has one singular stratum of
codimension 2 with angle α ≥ 2π. In this setting, Aubin’s argument to show the strict
inequality with respect to Yn can be carried out identically, considering test functions
supported on the regular set. Since the local Yamabe constant equals the one of the
sphere, this leads to proving Y (X[g]) < Yℓ(X, [g]) and therefore to the existence of a
Yamabe metric.

In my subsequent work, I studied further properties of Einstein metrics on compact
stratified spaces. In [Mon18], I proved a rigidity result for the first eigenvalue of the
Laplacian on a compact stratified space (X, g) such that Ricg ≥ n − 1 and the angle
along the stratum of codimension 2 is smaller than 2π. This allowed me to prove that, in
this setting, if g is Einstein, either it is the only Yamabe metric, up to homothety, in its
conformal class, or (X, g) is isometric to a spherical suspension. Both of these rigidity
statements are analogues of classical results by M. Obata [Oba62, Oba72] in the case of
compact smooth manifolds.

In a collaboration with K. Akutagawa [AM22], we proved that the singular spheres
(Sn

a , ha) do not carry any Yamabe metric in the conformal class of ha for any a > 2.
This was the first singular example of non-existence of Yamabe metrics since the work
of J. Viaclovsky, and the first with non-isolated singularities.

In the following, I will present these two results and the main ideas of their proof.
A key tool for both is the regularity of a Yamabe minimizer u on a compact, Einstein
stratified space (X, g): in presence of codimension 2 singularities of angle less than 2π,
a solution to the Yamabe equation is Lipschitz and belongs to W 2,2(X) ∩L∞(X); if the
angles are larger than 2π, u is Hölder regular, but we still have a useful gradient estimate
that allows to integrate by parts.
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1.2 Einstein metrics and regularity of a Yamabe minimizer

In this section we present the regularity results for Yamabe minimizers that are needed
in the following. We briefly sketch the ideas of their proof, as they also come into play
in the next chapter.

The following statement was first proven in [Mon18, Lemma 4.9] when the angle of
the codimension 2 stratum is smaller than 2π, then in [AM22, Proposition 3.1] for angles
larger than 2π.

Proposition 1.2. Let Xn be a compact stratified space, with singular set Σ, endowed
with an Einstein metric g. Let α be the cone angle along the stratum of codimension 2.
Assume that u ∈ W 1,2(X) ∩ L∞(X) is a Yamabe minimizer. Then the following holds.

1. If α ∈ (0, 2π], then u belongs to W 2,2(X), its gradient is bounded and u is a
Lipschitz function.

2. If α > 2π, then u belongs to C0,ν(X) for ν = 2π/α. Moreover for any ε > 0

∥du∥L∞(X\Σε) ≤ Cεν−1,

where Σε denotes the ε-tubular neighbourhood of Σ.

In both cases, the starting point of the proof is the following, that is obtained by
combining Lemma 3.1 and Proposition 3.2 in [AM22].

Proposition 1.3. Let (X, g) be a compact stratified space such that Ricg ≥ k for some
k ∈ R. Let α be the angle along the codimension 2 stratum Σn−2 and V ∈ L∞(X).
Assume that u ∈ W 1,2(X) ∩ L∞(X) is a weak solution of

∆gu = V u (1.1)

and moreover there exists a constant c > 0 such that

∆g|du| ≤ c|du| on Xreg. (1.2)

Then the following hold.

(i) If α ∈ (0, 2π], then there exists a positive constant C such that for all ε > 0

||du||L∞(X\Σε) ≤ C
√

| ln(ε)|. (1.3)

(ii) If α > 2π, then u ∈ C0,ν(X) for ν = 2π/α and there exists a positive constant C
such that for all ε > 0

||du||L∞(X\Σε) ≤ Cεν−1,
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Chapter 1. The Yamabe problem on stratified spaces

Observe that, without the assumption on the Ricci curvature, the regularity of a
solution to a Schrödinger equation ∆gu = V u depends on all of the singular strata Σj

of the space, and in particular on the first eigenvalues of the Laplacians over the links
(Zj , hj) (see [AM22, Proposition 3.2]). When we assume Ricg ≥ k, we obtain for all j
that Richj

≥ dim(Zj) − 1 and we can apply Lichnerowicz theorem [Mon17, Theorem
2.1] to get a simpler situation, where only the codimension 2 stratum determines the
regularity of u.

The previous proposition can be applied to a Yamabe minimizer on a compact strat-
ified space X carrying an Einstein metric g. First, since a Yamabe minimizer is bounded
and Scalg is constant, we can consider the Yamabe equation as a Schrödinger equation
with the bounded potential given by

V = Y (X, [g])u
4

n−2 − an Scalg ∈ L∞(X).

Also observe that the Yamabe equation can be seen as an equation of the form

∆gu = F (u),

where the function F is the locally Lipschitz function given by

F (x) = (Y (X, [g])x
4

n−2 − Scalg)x.

Under the assumption that g is an Einstein metric and using Bochner formula, it is
not difficult to show that (1.2) is satisfied, see [Mon15, Proposition 2.3]. Therefore, the
second point in Proposition 1.2 follows directly by applying Proposition 1.3.

When the angle along the codimension 2 stratum is smaller than 2π, it is possible to
improve the gradient estimate (1.3) by using a logarithmic trick, see for instance [Mon15,
Page 54]. For any ε > 0 we can choose a cut-off function such that 0 ≤ ρε ≤ 1, ρε is
equal to one outside of Σε, vanishes on Σε2 and it satisfies

∥∇ρε∥2 ≤ C√
| ln(ε)|

Moreover, using the gradient estimate (1.3), ρε can be chosen such that
ˆ

Σε\Σε2
|∆gρε||du|2 dvg ≤ C. (1.4)

By Bochner-Lichnerowicz formula, we can write

∇∗∇du+ Ricg(du) = F ′(u)du, (1.5)

then we express the Laplacian of |du|2 as

1
2∆g|du|2 = (∇∗∇du, du)−|∇du|2 = F ′(u)|du|2−(n−1)|du|2−|∇du|2 ≤ C1|du|2−|∇du|2,

(1.6)
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where in the last inequality we used that F is locally Lipschitz and u is bounded. By
multiplying by ρε, integrating by parts and using (1.4), we obtainˆ

X
ρε|∇du|2 dvg ≤ C1

ˆ
X
ρε|du|2 dvg + C, (1.7)

so that the L2-norm of |∇du| is bounded and u belongs to W 2,2(X). We can then prove

∆g|du| ≤ c|du| (1.8)

weakly on X, and Moser’s iteration allows to conclude that |du| is bounded.

1.3 An Obata-type result for stratified spaces
In the case of a compact smooth manifold Mn of dimension n ≥ 3 with Einstein metric
g, thanks to the work of M. Obata [Oba62, Oba72] we know that the existence of a
metric conformal to g, not homothetic to g and with constant scalar curvature, implies
that (M, g) is isometric to the round sphere. Moreover, the Einstein-Hilbert functional
on the round sphere is minimized by constant multiples of the round metric and their
images under conformal diffeomorphism.

In [Mon18] we showed an analogous rigidity result for compact Einstein stratified
spaces, provided that the angle along the codimension 2 stratum is smaller than 2π.

Theorem 1.4. Let X be a compact stratified space of dimension n endowed with an
Einstein metric g with cone angle α ∈ (0, 2π) along its stratum of codimension 2. Assume
that there exists a metric g̃ ∈ [g], not homothetic to g, with constant scalar curvature.
Then g̃ is an Einstein metric as well and (X, g) is isometric to the spherical suspension
([0, π] × X̂, dt2 + sin2 t ĝ) of a compact Einstein stratified space (X̂, ĝ).

The main ingredients to prove Theorem 1.4 are the regularity of a Yamabe minimizer
stated above and the following rigidity result for the first eigenvalue of the Laplacian.

Theorem 1.5. Let X be a compact stratified space of dimension n endowed with a
metric g such that Ricg ≥ (n − 1) and with cone angle α ∈ (0, 2π) along its stratum of
codimension 2. The first eigenvalue of ∆g is equal to n if and only if X is the spherical
suspension of a compact stratified space of dimension n− 1.

Then the proof of Theorem 1.4 consists in showing the existence of an eigenfunction
of the Laplacian associated with the eigenvalue n. In order to do this, we prove that
there exists a function ϕ such that

∇dϕ = −∆gϕ

n
g, (1.9)

by showing that the traceless Ricci tensor Eg̃ of g̃ vanishes (so that g̃ is an Einstein
metric as well). We consider a cut-off function ρε of the singular set Σ, vanishing on the
tubular neighbourhood Σε, equal to one outside of Σ2ε, and study the integral

Iε =
ˆ

X
ρε|Eg̃|2gdvg = (n− 2)

ˆ
X
ρε(Eg̃,∇dϕ)gdvg,
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Chapter 1. The Yamabe problem on stratified spaces

where ϕ is such that g̃ = ϕ−2g. The function ϕ is simply the power of a solution u to the
Yamabe equation and it has the same regularity as u. When appropriately integrating
by parts, we obtain the following estimate:

Iε ≤ c1

ˆ
X

∆gρε|∇ϕ|2dvg + c2

ˆ
X

(∇ρε,∇ϕ)gdvg.

The regularity of ϕ is crucial. Indeed, using that |∇ϕ| is bounded, it was shown in
[Mon15] that ρε can be chosen so that the two summands on the right-hand side tend
to zero as ε goes to zero. Therefore |Eg̃|g vanishes, g̃ is an Einstein metric and the
conformal change of the traceless Ricci tensor immediately yields to equation (1.9). The
existence of an eigenfunction of the Laplacian associated to n follows: for the details,
we refer to the proofs of Corollaries 4.7 and 4.8 in [Mon18].

A similar situation to the one of the smooth round sphere is given by the following.
Consider the singular sphere (Sn

a , ha) as defined above. For a ∈ (0, 1], the metric ha is a
Yamabe metric. Moreover, in [AM22] we proved:

Proposition 1.6. Let a ∈ (0, 1] and (Sn
a , ha) defined as above. Assume that h ∈ [ha] has

constant scalar curvature, then there exists a conformal diffeomorphism φ of (Sn
a , ha),

preserving the singular set, such that up to a constant multiple we have h = φ∗ha. As a
consequence, the Einstein-Hilbert functional is minimized in [ha] by constant multiples
of ha and their images under conformal diffeomorphism.

In this proof we apply Theorem 1.4 to deduce that there is an isometry φ between
(Sn

a , h) and a spherical suspension ([0, π] × X̂, dt2 + sin2 t ĝ) preserving the singular sets.
Therefore, the so-called tangent cone at the point p = {0}×X̂, that is the cone over X̂, is
isometric to the tangent cone of (Sn

a , h) at x = φ−1(p). We use again that if h = ϕha, the
function ϕ is Lipschitz and, as a consequence, the tangent cone of (Sn

a , h) at x coincides
with the tangent cone of (Sn

a , h) at x. This latter cone is the cone over (Sn−1
a , hn−1

a ). This
implies that (X̂, ĝ) is isometric to (Sn−1

a , hn−1
a ): the spherical suspension of (Sn−1

a , hn−1
a )

is clearly (Sn
a , ha), thus φ is the desired conformal diffeomorphism.

1.4 Non-existence of Yamabe metrics
As we pointed out above, for any a > 1, the metric ha on Sn is an Einstein metric
without being a Yamabe metric. Furthermore, in [AM22] we showed that for all a ≥ 2
the conformal class of ha does not contain any Yamabe metric. More precisely we
obtained the following.

Theorem 1.7. Let α ∈ [4π,+∞) and a = α/2π. Let (Sn
a , ha) be defined as above. Then

there is not any Yamabe metric in the conformal class of ha.

We briefly sketch the main ingredients of the proof and refer to [AM22, Section 5]
for the details. Our proof relies on the computation of the local Yamabe constant, the
regularity of a Yamabe minimizer and a contradiction argument inspired by a lemma
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due to Aubin [Aub76a, AN07]. This latter lemma states that the Yamabe constant
of a finite covering (Mk, gk) of a compact smooth manifold (Mn, g) is strictly greater
than Y (M, [g]): in order to do this, one needs to consider a solution u to the Yamabe
equation on (Mk, gk), its average v over the deck transformation group of the covering
and a function v0 on (M, g) whose lift is v. Then by using integration by parts and
Hölder’s inequality it is not difficult to obtain Qg(v0) < Y (Mk, [gk]). We perform this
argument by considering (Sa, ha) as the double branched cover of (Sb, hb) for b = a/2.
We assume by contradiction that a Yamabe metric does exists on (Sa, ha) and we denote
it by g̃ = u

4
n−2ha, where u solves the Yamabe equation on the regular set. We consider

the average of u over the deck transformation group {id, γ}

v = u+ u ◦ γ,

and define v0 as the function on Sn
b whose lift is v. If we can integrate by parts and show

that Qhb
(v0) < Yn, we obtain a contradiction. Indeed, thanks to [Mon17] we know that

Y (Sn
a , [ha]) = Y (Sn

b [hb]) = Yn. The gradient estimate of Proposition 1.2 is key to allow
us to be able to integrate by parts: we can write

ˆ
X

|du|2 dvg = lim
ε→0

ˆ
X\Σε

u∆gudvg −
ˆ

∂Σε

u⟨du,N⟩ dσg,

where N is the unit outward normal of ∂Σε. Thanks to Proposition 1.2, the last term
in the right-hand side is bounded by

ˆ
∂Σε

u⟨du,N⟩ dσg ≤ ∥u∥∞ε
ν−1 volσg (∂Σε),

and since the codimension of Σ is equal to two, this volume is controlled by a constant
times ε. Therefore, by passing to the limit as ε goes to zero, we obtain the classical
integration by parts formula

ˆ
X

|du|2 dvg =
ˆ

X
u∆gudvg.

This allows us to use Aubin’s computation for coverings in order to obtain the desired
contradiction.

1.5 Perspectives
Many questions are still open in relation with the Yamabe problem on stratified spaces.
We briefly present below the ones that we plan to address in the future.

Non-existence of Yamabe metrics

First of all, in the continuity of our previous work, the restriction α ≥ 4π in Theorem 1.7
is technical: when using the double branched covering of (Sn

a , ha) we need α/2 ≥ 2π in
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order to get a contradiction. We conjecture that even in the case α > 2π, the conformal
class of [ha] does not contain a Yamabe metric. We intend to prove this by using a
technique based on isoperimetric domains, different from the one of [AM22]. Indeed,
the existence of Yamabe metrics on (Sn

a , ha) is equivalent to the existence of extremal
functions for the optimal Sobolev inequality in the conformal stereographic projection
Rn ×C(S1

a). This inequality is equivalent to the Euclidean isoperimetric inequality, that
does hold in Rn × C(S1

a) for a ≥ 1 as it was proven in [Mon17]. We will show that the
only isoperimetric domains are the balls not intersecting the singular set. This will allow
to prove that there is no extremal function for the Sobolev inequality on Rn × C(S1

a),
and as a consequence no Yamabe metric on (Sn

a , ha) if a > 1. The difficulty lies in
the fact that, in presence of an angle larger than 2π, the space is not of non-negative
curvature, even in a generalized sense, then one cannot rely on the recent techniques
of [Bre23, BK23], where isoperimetric domains are studied in manifolds and spaces of
non-negative curvature.

Positive mass theorem

The positive mass theorem has been proven for dimensions between 3 and 8 [SY79, SY81]
and in any dimension in the case of spin [Wit81] and Kähler [HL16] manifolds; proofs
removing these assumptions have been announced by Lohkamp, and Schoen and Yau.
Starting from the work of P. Miao [Mia02], there have been several recent develop-
ments in the study of positive mass theorems for low-regularity metrics, see for instance
[JSZ22b, DSW24a] and the references therein. T. Ju and J. Viaclovsky [JV23] showed
a positive mass theorem for asymptotically flat manifolds with finitely many isolated
orbifold singularities. A common feature of these works is that the singular set is com-
pact, thus it has no influence on the model at infinity. However, if one is interested in
geometric applications to the Yamabe problem in a singular setting, these versions of
the positive mass theorem do not give enough information. Indeed, in case of orbifolds
or more generally (iterated) conical singularities, it is necessary to consider a confor-
mal stereographic projection via the Green function with pole at a singular point. For
an isolated orbifold singularity, the space obtained is asymptotically locally Euclidean
(ALE), that is, its model at infinity is a quotient of the Euclidean space by a finite group.
The mass of ALE spaces, when it is well-defined, can be negative, or vanish without the
space being Euclidean, as shown by the examples of [LeB88, HL16]. If the singularities
are of codimension 2, a conformal projection at a singular point would give a space with
singularities at infinity. We plan to study the validity of the positive mass theorem in
this setting, starting from dimension 3. Even in this case, this is a challenging question
that needs to understand how the singularities affect the asymptotic expansion of the
Green function and consequently the value of the mass. We intend to follow different
strategies. First of all, we plan to use potential theory, taking inspiration on the recent
techniques of [AMO24], that are based on a monotonicity formula for the level sets of the
Green function of the Laplacian. At the same time, we intend to study minimal surfaces
in the singular setting, with the goal to adapt R. Schoen and S. T. Yau’s approach.
Finally, a more difficult option consists in understanding the appropriate notion of spin
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singular manifold and the properties of the Dirac operator in this setting, in order to
be able to apply Witten’s techniques. In all of the three cases, the comprehension of
the necessary tools in presence of singularities represents a new subject that can lead
to many applications. We plan to first consider orbifold singularities along a curve,
then to explore the more general case of conical singularities not necessarily obtained
as quotients by finite groups. The following step will consists in studying the question
of rigidity: the vanishing mass ALE examples and the case of singular spheres (Sn

a , ha)
show that this question will be much richer than in the smooth case.

Compactness of constant scalar curvature metrics

As N. Trudinger showed, in the case of a compact smooth manifold (Mn, g) with neg-
ative Yamabe invariant, there is a unique constant scalar curvature (CSC for short)
conformal metric in [g]. If the Yamabe invariant is strictly positive and the manifold
is not conformally equivalent to the sphere, R. Schoen conjectured that the set of CSC
conformal metrics is compact. Surprisingly, this is true in dimension smaller than 24 and
false otherwise, see [Bre08]. In collaboration with N. Marque and S. Tapie, we intend to
prove that in presence of orbifolds singularities, the lack of compactness can occur even
in dimension smaller than 24. For this, we will consider 4-orbifolds with a finite number
of isolated singularities. To each singular point one can associate an ALE space with a
finite number of orbifold singularities, through a conformal stereographic projection. We
call mass of the singular point the mass of this ALE space: it can be positive, negative or
equal to zero. The recent work [JV23] shows that if all of the masses at singular points
are non-zero, then the CSC metrics in a conformal class are compact. Nevertheless,
[Via10, Theorem 1.5] gives examples of existence of CSC conformal metrics with one
orbifold point of vanishing mass. Therefore, in presence of points of zero mass, we plan
to analytically characterize the lack of compactness, then to give geometric conditions to
avoid this phenomenon, by taking inspiration on the techniques of [KL22, KL24]. When
these questions will be understood, I intend to study the construction of examples of
4-orbifolds for which the CSC metrics in a conformal class are not compact.

Yamabe invariant and singular metrics

The smooth Yamabe invariant σ(M) of a compact smooth manifold M is the supremum
over all conformal classes of Riemannian metrics g on M of the Yamabe constants
Y (M, [g]). The introduction of this invariant was motivated by H. Yamabe’s attempt
to find Einstein metrics on a compact manifold; it was later studied by R. Schoen and
O. Kobayashi and more recently by many others, C. LeBrun, K. Akutagawa, A. Neves,
J. Petean, G. Yun, B. Ammann, M. Dahl, E. Humbert, B. Botvinnik, J. Rosenberg. One
main question about the Yamabe invariant is to determine its value, which is known in
relatively few cases, or to find a lower bound for it. Indeed, the Yamabe constant of the
sphere is an upper bound for σ(M) for any manifold M . We refer to the introduction
of [ADH13] for a nice overview on the subject. Another challenging problem consists
in establishing if there exists a metric that realizes the Yamabe invariant, and whether
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it is an Einstein metric: this holds in the case of existence and when σ(M) ≤ 0, while
it is unknown for σ(M) > 0. Note that the Yamabe invariant is positive if and only if
M admits a positive scalar curvature metric, and there are well-known obstructions to
the existence of such metrics due to the work of M. Gromov and H. B. Lawson and of
R. Schoen and S. T. Yau.

In a joint work with K. Akutagawa, we intend to prove a lower bound for the Yamabe
invariant of a manifold M which admits a singular Einstein metric g with a codimension
2 singularity of angle smaller than 2π and Ricg = λg for λ > 0 on the regular set.
Our strategy consists in showing that there exists a sequence of smooth metrics {gδ}
with suitable lower bound on the Ricci curvature and control of the volume, such that
Y (M, [gδ]) converges to Y (M, [g]). This will directly lead to σ(M) ≥ Y (M, [g]).

Singular Einstein Yamabe metrics may be significant to the study of the existence
of a metric attaining σ(M): the idea is to construct a sequence of singular metrics
{gi}i∈I such that Y (M, [gi]) converges to σ(M) and then study the limit of (M, gi). An
analogue approach was used by X. X. Chen, S. Donaldson and S. Sun in order to prove
the existence of a Kähler-Einstein metric on a Fano manifold, see [CDS15a, CDS15b,
CDS15c]: it is first necessary to show the existence of a Kähler-Einstein metric with
angles smaller than 2π along a divisor, then making the angles tend to 2π allows to obtain
the desired metric on the smooth manifold. Considering codimension 2 singularities
is also motivated by the case of the sphere, for which σ(Sn) = Yn and the metrics ha

considered in the previous sections eventually give a sequence of singular Einstein metrics
which converges to the round metric, such that Y (Sn

a , [ha]) tends to Yn as a goes to
one. The existence of a singular Einstein metric is a challenging problem worth to be
investigated deeply.
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Chapter 2

Geometric aspects of RCD spaces

In this chapter we present the main results obtained in collaboration with J. Bertrand,
C. Ketterer and T. Richard in [BKMR21] and with A. Mondino and R. Perales in
[MMP22].

2.1 Introduction

The study of generalized notions of curvature bounds started with the introduction of
Alexandrov spaces in the 1950s: these are metric spaces for which a lower, or an upper
curvature bound, is given in terms of triangle comparison. They generalize manifolds
with sectional curvature bounded from below or above. As for the Ricci curvature, it is
a well-known fact that it is related to volumes: for instance, on a smooth Riemannian
manifold (Mn, g), Ricg controls the deformation of the volume of balls along a geodesic,
since it appears in the expansion of the Riemannian volume measure vg. Moreover, a
lower bound K on Ricg implies that the volume ratio at a point x between the volume vg

of a ball of radius r and the volume of a ball of the same radius in the space of constant
curvature K is non-increasing (Bishop-Gromov inequality). The first to study non-
smooth spaces with generalized Ricci curvature bound were J. Cheeger and T. H. Colding
[CC97, CC00a]: they developed a regularity theory for Ricci limits, that is Gromov-
Hausdorff limits of sequences of manifolds satisfying a Ricci lower bound. Ricci limits
are endowed with limit measures and many properties of their structure depend on them.
When trying to generalize the notion of a Ricci lower bound, it is then natural to consider
metric measure spaces. At the beginning of the 2000s, K. T. Sturm [Stu23, Stu06]
and J. Lott together with C. Villani [LV07, LV09] introduced the so-called curvature-
dimension condition CD(K,N), based on optimal transport of measures, and which
extends the notions of Ricci curvature bounded from below by K ∈ R and dimension
bounded above by N ≥ 1. This led to the development of a vast theory putting into play
analytic, geometric and probabilistic methods, pushing forward the study of non-smooth
spaces and with consequences on smooth manifolds as well. A comprehensive overview
of the subject is out of the scopes of this memoir: we refer to [Vil09, Led09, Vil19, Gig23]
for some rich surveys, and in the following we focus on some geometric aspect of this
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theory.
A smooth Riemannian manifold, endowed with its natural metric and measure, sat-

isfies the CD(K,N) condition if and only if its Ricci curvature is bounded from below by
K and its dimension is smaller than N . However, Finsler manifolds can also satisfy the
CD condition: it was with the goal of ruling out Finslerian structures that L. Ambrosio,
N. Gigli and G. Savaré [AGS14, Gig15] refined the previous condition and introduced
RCD spaces. The class of RCD(K,N) spaces is closed under pointed measured Gromov-
Hausdorff convergence and natural geometric operations such as quotients [GGKMS18],
conical and warped product constructions [Ket15, Ket13]. For several years, the main
examples of RCD spaces have been manifolds with Ricci curvature bounded from below,
Ricci limits, weighted manifolds with Bakry-Émery curvature bounded from below and
the above cited constructions over such manifolds or RCD spaces. The singularities of
these spaces are quite rigid: for instance, only exact cones or orbifolds singularities,
which are obtained by a quotient, were known to belong to the setting of RCD spaces,
but not general conical singularities. In parallel, singular manifolds had been studied for
long in Riemannian geometry, see for instance [Che79], and in most of the cases the sin-
gularities are asymptotic to a model, such as a cone or a cusp, but not exactly conical or
cuspidal. In his 2017 Bourbaki seminar, C. Villani [Vil19] raised the question of enlarging
the class of examples of RCD spaces. The joint work [BKMR21] aims to give a new class
of singular examples that are RCD spaces, building a bridge between RCD theory and
the theory of singular manifolds with iterated conical singularities. As an application,
our result has been recently used in [DSW24b] to show the following rigidity statement:
on the connected sum of a manifold Mn, which is spin or has dimension between 3 and
7, and the torus Tn a metric with conical singularities and non-negative scalar curvature
must be flat everywhere and extends smoothly across the singular points (see the proof
of [DSW24b, Theorem 1.1]).

Another challenging question concerning RCD spaces consists in understanding their
geometric and topological properties. We are concerned here in particular in the prop-
erties related to the fundamental group, which can be seen as the simplest topological
invariant of a manifold, and on the first Betti number. Thanks to results of Myers and
Bochner, it is well-known that a lower Ricci bound on a manifold is related to the fun-
damental group: if (Mn, g) is such that Ricg ≥ K with K > 0, then its fundamental
group π1(M) is finite and its first Betti number b1(M) vanishes. When K ≥ 0, then
b1(M) ≤ n, with equality if and only if the manifold is isometric to the flat torus.

For RCD spaces, even the existence and uniqueness of a universal cover, thus of
a topologically relevant fundamental group, is not trivial. C. Sormani and G. Wei
[SW04a, SW04b, SW01] developed a theory to ensure that the universal cover of a
length space does exist: this applies to Ricci limit spaces and was the starting point
for A. Mondino and G. Wei [MW19] to prove the existence of a universal cover for an
RCD∗ space. The condition CD∗ was introduced by [BS10] as a “reduced” CD condition
carrying a local-to-global property. A priori, the universal cover (X̃, d̃, µ̃) of an RCD∗

space (X, d, µ) is not necessarily simply connected, but one can still define the revised
fundamental group π1(X) as the group of deck transformations of its universal cover.
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The revised Betti number b1(X) is defined as the rank of the abelianization of π1(X). In
this setting, in a joint work with A. Mondino and R. Perales [MMP22], we first proved
an upper bound for b1(X), that extends a result of M. Gromov and S. Gallot for compact
smooth manifolds with almost non-negative Ricci curvature. Secondly, we obtained a
topological stability result for the flat torus, recovering the one proven in the smooth
setting by J. Cheeger and T. H. Colding [Col97, CC97].

Very recently, J. Wang [Wan24] proved that any RCD∗ space (X, d, µ) is semi-locally
simply connected. As a consequence, its fundamental group is simply connected and its
revised fundamental group π1(X) is isomorphic to the usual fundamental group π1(X).
The revised Betti number that we used in our work [MMP22] then coincides with the
usual first Betti number of a manifold.

2.2 Minimal background on RCD spaces
Throughout this chapter a metric measure space is a triple (X, d, µ) such that (X, d) is
a complete and separable metric space and µ is a locally finite Borel measure on X with
full support. In the following and for the scopes of this memoir, we are going to focus
on the definition of RCD metric measure spaces and on their basic properties, while we
refer to the ample literature on synthetic curvature bounds, for instance to the surveys
[Vil09, Gig23] for the precise definition of the CD(K,N) condition. This is defined by a
convexity property for an entropy functional along geodesics in the space of probability
measures on (X, d, µ), using optimal transport of measures.

For any N ≥ 1 and K ∈ R, L. Ambrosio, N. Gigli and G. Savaré [Gig15, AGS14]
defined an RCD(K,N) space as a space that satisfies the CD(K,N) condition and which
is in addition infinitesimally Hilbertian. In order to explain this property, we need to
introduce some notations. We denote by Lip(X) the set of Lipschitz functions on X,
and for f ∈ Lip(X) we define its local Lipschitz constant Lip(f) as the function

x 7→ Lip(f)(x) = lim sup
y→x

|f(x) − f(y)|
d(x, y) .

The Cheeger energy Ch : L2(X,µ) → [0,+∞] is the convex and lower semi-continuous
functional defined for any f ∈ L2(X,µ) by

Ch(f) = inf
fn→f

{
lim inf
n→∞

ˆ
X

Lip(fn)2 dµ
}
, (2.1)

where the infimum is taken over the set of sequences (fn)n ⊂ L2(X,µ) ∩ Lip(X) con-
verging to f in L2(X,µ). The Sobolev space of (X, d, µ) is then defined by

W 1,2(X, d, µ) = D(Ch) = {f ∈ L2(X,µ), Ch(f) < +∞},

and endowed with the norm

∥f∥2
W 1,2 = ∥f∥2

2 + Ch(f).
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It is possible to show that for any f ∈ W 1,2(X, d, µ) there exists a unique L2-function
|df | called minimal relaxed slope such that

Ch(f) =
ˆ

X
|df |2 dµ,

and |df | = |dg| for any g such that f = g µ-a.e.

Definition 2.1. A metric measure space (X, d, µ) is infinitesimally Hilbertian if its
Cheeger energy is quadratic, or equivalently, if the space (W 1,2(X, d, µ), ∥ · ∥W 1,2) is a
Hilbert space.

A Finsler manifold can satisfy the CD condition, but its Cheeger energy is quadratic
if and only if the manifold is Riemannian. This was one of the main reasons to introduce
the following definition.

Definition 2.2. Let K ∈ R and N ∈ [1,∞). A metric measure space (X, d, µ) is
an RCD(K,N) space if it satisfies the CD(K,N) condition and it is infinitesimally
Hilbertian.

Remark 2.1. We point out that one may also consider the so-called CD∗ condition,
which is a priori weaker than than CD, and introduce RCD∗ spaces similarly. One
important difference in the definitions of the CD and CD∗ conditions is that this latter
has the local-to-global property: if (X, d, µ) is such that for any point in x there exist a
ball BX(x, r), a CD∗(K,N) metric measure space (Y, dY , µY ) and a measure preserving
isometry φx : BX(x, r) → BY (y, r), then (X, d, µ) is a CD∗(K,N) space. We refer to
[BS10] and [EKS15, Section 3]. This property was used in the work of A. Mondino and
G. Wei [MW19] to construct a universal cover of an RCD∗ space that still satisfies the
RCD∗ condition. However, F. Cavalletti and E. Milman [CM21] have shown that the CD
and CD∗ conditions are equivalent for an essentially non-branching metric measure space
of finite measure; this was later extended by Z. Li [Li24] in the case of infinite measure.
Moreover, RCD∗ spaces have been shown to be essentially non-branching in [RS14] (and
more recently non-branching in [Den21]), therefore being RCD∗ is equivalent to being
RCD. For this reason, in the rest of this presentation we only refer to RCD spaces.

In this chapter and the following, it will be useful to adopt another point of view
based on Dirichlet spaces and the Bakry-Émery inequality, rather than on optimal trans-
port. The Bakry-Émery inequality is a weak version of the Bochner inequality that was
introduced in the work of D. Bakry and M. Émery [BE85, Bak94] using the so-called
Γ-calculus. We refer to [CMT24, Section 1.2] for the precise definition of a regular,
strongly local Dirichlet space, and we recall here the notions of carré du champ and of
self-adjoint operator associated to a Dirichlet form.

Definition 2.3. Let (X, d, µ, E) be a regular, strongly local Dirichlet space. The carré
du champ is a non-negative definite symmetric bilinear map Γ : D(E) × D(E) → Rad,
where Rad is the set of signed Radon measure on (X, d), such that for all f, g ∈ D(E)

E(f, g) =
ˆ

dΓ(f, g).
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A Riemannian manifold (Mn, g) is clearly a Dirichlet space when endowed with the
Dirichlet form defined for any u, v ∈ C1

c (M)

E(u, v) =
ˆ

M
⟨du, dv⟩g dµg, (2.2)

where µg is any constant multiple of the Riemannian volume vg. The Γ operator simply
associates to any f, g ∈ W 1,2(M) the measure ⟨df, dg⟩g dµg.

For an infinitesimal Hilbertian space, the Cheeger energy is a strongly local, regular
Dirichlet form. Moreover, the carré du champ and the minimal relaxed slope are related
by the following: the carré du champ operator takes values in the set of absolutely
continuous Radon measures, and for any f, g ∈ W 1,2(X, d, µ) we can define

⟨df, dg⟩ := dΓ(f, g)
dµ = lim

ε→0

|d(f + εg)|2 − |df |2

2ε ∈ L2(X,µ).

In particular for all f ∈ W 1,2(X, d, µ) we have dΓ(f) = |df |2 dµ.
A Dirichlet form is associated to a non-negative definite self-adjoint operator L with

dense domain D(L) ⊂ L2(X,µ), defined by

D(L) :=
{
f ∈ D(E) : ∃h =: Lf ∈ L2(X,µ) s.t. E(f, g) =

ˆ
X
hg dµ ∀g ∈ D(E)

}
.

In the case of an infinitesimally Hilbertian space this operator is referred to as the
Laplacian and denoted by ∆. Thanks to the work of M. Erbar, K Kuwada, K. T. Sturm
[EKS15], L. Ambrosio, A. Mondino and G. Savaré [AMS19], and to the equivalence
between RCD and RCD∗, Definition 2.2 is equivalent to the following.

Definition 2.4. Let N ∈ [1,∞), K ∈ R. A metric measure space (X, d, µ) is an
RCD(K,N) space if the following hold.

1. (X, d, µ) is infinitesimally Hilbertian.

2. There exists x ∈ X and c > 1 such that for any r > 0 we have

µ(B(x, r)) ≤ cecr2
.

3. The Sobolev-to-Lipschitz property is satisfied, that is, for all f ∈ W 1,2(X, d, µ)
such that |df |2 ≤ 1 µ-a.e. there exists a Lipschitz representative of f .

4. The Bakry-Émery inequality BE(K,N) holds, that is, for all f ∈ D(∆) with ∆f ∈
W 1,2(X, d, µ) and for all ψ ∈ D(∆) ∩ L∞(X), with ψ ≥ 0 and ∆ψ ∈ L∞(X) we
have

−1
2

ˆ
X

|df |2∆ψ + ψ⟨d∆f, df⟩ dµ ≥
ˆ

X
ψ

(
K|df |2 + (∆f)2

N

)
dµ. (BE(K,N))
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The following are the properties of CD and RCD spaces that are relevant for the rest
of this chapter and the next.

1. The Bishop-Gromov inequality holds on an CD space, see [Stu06].

2. The set of RCD metric measure spaces is compact with respect to the pointed
measured Gromov-Hausdorff topology: any sequence of RCD (respectively RCD∗)
spaces admits a subsequence converging to a limit RCD (respectively RCD∗) space.
This was first proven for CD spaces in [LV09, Stu23], then obtained in [EKS15,
AGS14, GMS15] in the RCD case.

3. We have the following scaling properties: if (X, d, µ) is an RCD(K,N) space,
then for any λ, c > 0 the space (X, d, cµ) is RCD(K,N) and (X,λd, µ) is
RCD(λ−2K,N).

4. For any K ∈ R and N ∈ (1,∞) and for any RCD(K,N) space (X, d, µ) there is a
unique integer k ∈ {1, . . . , ⌊N⌋} such that (X, d, µ) is k-rectifiable, that is, there
exits a countable collection of Borel subsets (Vi)i∈I such that µ(X \

⋃
i∈I) = 0

and bi-Lipschitz maps ϕi : Vi → ϕi(Vi) ⊂ Rk with ϕi(Vi) Borel sets and such that
(ϕi)#(µ ¬

Vi) ≪ Hk. The integer k is called the essential dimension of (X, d, µ).
The existence of an essential dimension was shown by [BS20], while rectifiability
was proven in [MN19, KM18, GP21, BPS21].

2.3 RCD stratified spaces

In this section we present the main result of [BKMR21], where we give a criterion
for a compact stratified space to be an RCD space. We refer to [BKMR21, Section
1] for the details on the structure of a compact stratified space (Xn, g) as a metric
measure space. In particular, we point out that a compact stratified space (Xn, g)
endowed with its natural distance dg and measure vg has finite volume, satisfies the
Sobolev-to-Lipschitz property and is infinitesimally Hilbertian (see [BKMR21, Section
2]). Therefore, following Definition 2.4, a stratified spaces is RCD(K,N) whenever the
Bakry-Émery inequality BE(K,N) is satisfied.

We had proven several geometric and analytic results on stratified spaces whose
Ricci tensor is bounded from below on the regular set and for which the angle along
the codimension 2 stratum is smaller than 2π: a Myers diameter bound, an optimal
Sobolev inequality with explicit coefficients, a lower bound for the first eigenvalue of
the Laplacian, an Obata-type rigidity statement in the case of equality in this latter
bound [Mon17, Mon18]. All of these results have their counterparts in the smooth and
RCD settings. This suggests that the Bakry-Émery condition should hold whenever
the Ricci tensor is bounded from below on the regular set and the angles along the
codimension 2 stratum are smaller than 2π. We actually proved that this assumption
on the Ricci tensor and on the cone angle is a necessary and sufficient condition for a
compact stratified space to be RCD.
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Theorem 2.2. Let (Xn, g) be a compact stratified space endowed with an iterated edge
metric. Equipped with its natural distance dg and measure vg, the space (X, dg, vg) is
RCD(K,N) if and only if n ≤ N , on the regular set Ricg ≥ K and the angles along the
codimension 2 stratum are smaller than 2π.

The fact that we do not need any assumption on higher codimension strata depends
on the lower bound on the Ricci curvature on the regular set, that immediately implies a
Ricci lower bound on the cone sections of these strata. As for the codimension 2 stratum,
which is of the form Rn−2 ×C(S1), it is natural to assume that the angle is smaller than
2π in order to have a generalized notion of curvature bounded from below. Indeed, it
is easy to show that a 2-dimensional cone of angle α ∈ (0, 2π] is an Alexandrov space
of non-negative curvature; if α is larger than 2π, the cone does not admit a curvature
lower bound in the sense of Alexandrov. Moreover, K. Bacher and K. T. Sturm [BS14]
showed that in this case the cone cannot satisfy the CD condition.

The classical proof showing that a smooth Riemannian manifold (Mn, g) is an
RCD(K,N) space if and only if Ricg ≥ K and n ≤ N relies on the behaviour of minimiz-
ing geodesics and thus does not immediately apply to stratified spaces. Indeed, in the
case of stratified spaces, little is known about the behaviour of geodesics: for instance,
minimizing geodesics between regular points may not avoid the singular set. We prove
as a consequence of the RCD condition that, under the assumptions of Theorem 2.2, the
regular set is almost everywhere convex, see Proposition 4.7 in [BKMR21].

As for the proof of Theorem 2.2, showing that the RCD(K,N) condition on a strati-
fied space (Xn, g) implies that Ricg ≥ K on the regular set relies on classical arguments
in the theory of CD spaces. In order to get that the angle along the codimension 2 stra-
tum is smaller than 2π, we use the structure of tangent cones of a stratified space and
the stability property of RCD spaces with respect to Gromov-Hausdorff convergence: we
refer to [BKMR21, Section 5.1] for the details.

The proof of the other implication consists in proving the Bakry-Émery inequality
BE(K,N) under our assumptions. Since eigenfunctions of the Laplacian form a basis
for its domain, we first obtain BE(K,N) for eigenfunctions. The Bochner inequality

−1
2∆g|∇u|2 + ⟨∇∆gu,∇u⟩g ≥ (∆gu)2

n
+K|∇u|2. (2.3)

holds on the regular set Xreg, so to prove BE(K,N), we would like to apply the previous
inequality to an eigenfunction, multiply by a cut-off function ρε of Σ and make ε go to
zero. When doing this, it is necessary to deal with terms of the formˆ

X\Σε

⟨∇φ,∇ρε⟩g dvg,

ˆ
X\Σε

∆ρε|∇u|2 dvg. (2.4)

In order to make these terms go to zero, we need to get information on the regularity of
eigenfunctions and to carefully choose the cut-off functions. In a similar way to the one
illustrated in Section 1.2 we obtain:

Proposition 2.3. Let (X, g) be a compact stratified space such that Ricg ≥ k and the
angle along the codimension 2 stratum is smaller than 2π. Let φ ∈ W 1,2(X) ∩ L∞(X)
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be an eigenfunction of the Laplacian ∆g. Then φ belongs to W 2,2(X) and it is Lipschitz
with bounded gradient.

For an eigenfunction φ, the argument presented in Section 1.2 applies directly, and it
does not require g to be an Einstein metric, as this assumption was only used to have a
bounded potential V in our rewriting of the Yamabe equation as a Schrödinger equation
of the form ∆gu = V u.

With this result in hand, we can construct a family of cut-off functions ρε such that
∥∇ρε∥2 and ∥∆gρε∥1 tend to zero as ε goes to zero. This ensures that for eigenfunctions
and their finite linear combinations the Bakry-Émery inequality BE(K,N) does hold.

In order to obtain BE(K,N) for all functions f in D(∆g) ∩ L∞(X) with ∆gf ∈
W 1,2(X), there is one last subtlety. We prove, see [BKMR21, Proposition 5.7]:

Proposition 2.4. Let (X, g) be a compact stratified space such that Ricg ≥ k and the
angle along the codimension 2 stratum is smaller than 2π. Then BE(K,N) holds for any
f and ψ satisfying the following: f belongs to D(∆g) and ∆gf ∈ W 1,2(X); ψ belongs to
D(∆g) ∩ L∞(X) and is such that ψ ≥ 0, |∇ψ| and ∆gψ are bounded.

In order to obtain BE(K,N), we need to drop the additional assumption of bounded
gradient for the test function. In order to do this, for any non-negative bounded ϕ
in D(∆g) with bounded Laplacian, we consider a sequence of linear combinations of
eigenfunctions {ψi}i that converges to ψ in W 1,2(X), with ∆gψi converging in L2(X) to
∆gψ. Then we use the heat semi-group {Pt}t>0 of the Laplacian: for any t > 0, Ptψi,
|∇Ptψi| and |∆gPtψi| are all bounded. Then we can apply Proposition 2.4 to any f and
Ptψi for all t > 0 and i. A Poincaré inequality holds on a compact stratified space, so
that {Pt}t>0 is ultra-contractive from L1(X) to L∞(X): this implies that Ptψi converges
uniformly to Ptψ. Finally, by making t go to zero, we obtain BE(K,N) for any f and
test function ψ as in Definition 2.4.

2.4 A torus stability result for RCD spaces

As we recalled in the introduction, a classical theorem by Bochner states that if (Mn, g)
is a compact manifold such that Ricg ≥ 0, then its first Betti number b1(M) not larger
than the dimension n, with equality if and only if the manifold is isometric to the flat
torus. M. Gromov [Gro81] and S. Gallot [Gal83] improved this by showing that the upper
bound on the first Betti number still holds if the Ricci curvature is almost non-negative.

Theorem 2.5 ([Gro81, Gal83]). Let n ∈ N. There exists ε > 0 only depending on n
such that if (Mn, g) is a compact manifold of diameter D satisfying D2 Ricg ≥ −ε, then
b1(M) ≤ n.

Therefore, a natural question is: what happens if (Mn, g) has almost non-negative
Ricci curvature and first Betti number equal to n? The answer was given by T. H. Cold-
ing [Col97] and J. Cheeger and T. H. Colding [CC00a] and reads as follows.
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Theorem 2.6 ([Col97, CC00a]). Let n ∈ N. There exists ε only depending on n such
that if (Mn, g) is a compact manifold of diameter D and such that b1(M) = n and
D2 Ricg ≥ −ε, then (Mn, g) is diffeomorphic to a flat torus Tn.

The proof of this theorem relies on the study of Ricci limits: first, Colding proved
that under the above assumption, large balls in the appropriate covering of M are
Gromov-Hausdorff close to balls in the Euclidean space Rn. He used equivariant Gromov-
Hausdorff convergence, as introduced by K. Fukaya and T. Tamaguchi [Fuk86, FY92] to
pass this information to the quotient: he obtained that (Mn, g) and the flat torus are
homeomorphic for n ̸= 3. The diffeomorphism follows from a deep result of [CC97, Theo-
rem A.1.12]: two smooth manifolds with a lower Ricci bound that are Gromov-Hausdorff
close are diffeomorphic. This is a consequence of J. Cheeger and T. H. Colding’s intrinsic
Reifenberg theorem.

In a joint work with A. Mondino and R. Perales [MMP22], we generalized to RCD∗

spaces the two previous theorems. Thanks to the equivalence of RCD and RCD∗ spaces
explained in Remark 2.1, we can state our results for RCD spaces. We also point out
that the recent result of J. Wang [Wan24] ensures that the universal covering of an RCD∗

space is simply connected and therefore the so-called revised fundamental group defined
by A. Mondino and G. Wei, that is, the group of deck transformations of the universal
cover, is isomorphic to the fundamental group. As a consequence, the results that we
stated in [MMP22] can be all formulated replacing the revised fundamental group by the
usual fundamental group. Recall that the first Betti number can be defined as follows:
let (X, d, µ) be a compact RCD∗(K,N) space for K ∈ R and N ∈ (1,∞) and π1(X)
its fundamental group. Set H = [π1(X), π1(X)] its commutator and Γ = π1(X)/H.
We know that π1(X) is finitely generated (see Proposition 2.25 in [MMP22]), thus Γ is
also finitely generated and Abelian. As a consequence, there exists s, s1, . . . , sℓ ∈ N and
prime numbers p1, . . . , pℓ such that Γ = Zs × Zs1

p1 × . . .× Zsℓ
pℓ

. The first Betti number is
defined by b1(X) = s.

We proved the following upper bound for b1(X) = s.

Theorem 2.7. There exists a positive function C(N, t) > 0 with limt→0C(N, t) = ⌊N⌋
such that for any compact RCD(K,N) space (X, d, µ) with supp(µ) = X, diam(X) ≤ D,
for some K ∈ R, N ∈ [1,∞), D > 0, the first Betti number satisfies b1(X) ≤ C(N,KD2).
In particular, for any N ∈ [1,∞) there exists ε(N) > 0 such that if (X, d, µ) is a compact
RCD(K,N) space with diam(X) ≤ D, KD2 ≥ −ε(N) then b1(X) ≤ ⌊N⌋.

The proof of this theorem relies on two main ingredients: a generalization of a
lemma by Gromov and the Bishop-Gromov inequality applied to the Abelian covering
X = X̃/H, with H defined as above.

As for the first, we proved it for compact geodesic spaces which admit a universal
cover and such that Γ is finitely generated: we obtained that Γ admits a finite-index sub-
group Γ′, isomorphic to Zb1(X), such that the action of Γ′ sends a point x̄ at a distance
bounded below and above in terms of the diameter of X (see Lemma 3.2 in [MMP22]).

As for the Bishop-Gromov inequality, G. Wei and A. Mondino showed that the
universal cover X̃ of an RCD∗ space (X, d, µ) endowed with its natural distance d̃ and
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measure µ̃) is an RCD∗ space as well. We need quotients of the universal covering by
normal subgroups of π1(X) to be RCD∗ too: we proved this in [MMP22, Corollary 2.26].
With these results in hand, a contradiction argument and volume counting argument
lead to Theorem 2.7.

In order to obtain torus stability, we need to keep into account that the upper bound
N on the dimension is not necessarily an integer, and the essential dimension of the
space may be strictly smaller than ⌊N⌋, in which case we would not get an isomorphism
with the flat torus of dimension ⌊N⌋. However, even if N is not an integer, we are able
to show that the essential dimension of the space is equal to ⌊N⌋ and that the finite
covering X/Γ′ is isomorphic to the flat torus T⌊N⌋. When N is integer, we obtain the
analogue of Theorem 2.6. More precisely, we have the following result.

Theorem 2.8 (Torus stability for RCD(K,N) spaces). For every N ∈ [1,∞) there
exists δ(N) > 0 with the following property. Let (X, d, µ) be a compact RCD(K,N)
space with Kdiam(X)2 > −δ(N) and b1(X) = ⌊N⌋.

1. The essential dimension of (X, d, µ) is equal to ⌊N⌋. If in addition N ∈ N, then
µ = cHN for some constant c > 0.

2. There exists a finite cover (X ′, dX′ , µX′) of (X, d, µ) and a real valued function of
δ and N satisfying that lim

δ→0
ε(δ|N) = 0, for every fixed N such that

dGH((X ′, dX′), (T⌊N⌋, dT⌊N⌋) ≤ ε(δ|N),

where dGH is the distance associated to the Gromov-Hausdorff topology and T⌊N⌋

is the flat torus.

3. If in addition N ∈ N, then (X, d) is bi-Hölder homeomorphic to an N -dimensional
flat torus.

We are going to illustrate the ideas of the proof of Theorem 2.8, as they are contained
in Sections 4, 5 and 6 of [MMP22]. The key point to obtain Theorem 2.8 consists in
showing that the Abelian covering X is locally mGH-close to the Euclidean space of
dimension n = ⌊N⌋. More precisely we prove:

Proposition 2.9. Let N ∈ (1,∞), ε ∈ (0, 1). There exists δ(ε,N) such that for any
δ ∈ (0, δ(ε,N)] if (X, d, µ) is an RCD(−δ,N) space with

b1(X) = ⌊N⌋, diam(X) = 1,

then there exists x ∈ X such that

dmGH(BX(x̄, ε−1),B⌊N⌋(0, ε−1)) < ε.

An analogue result was also the starting point of Colding’s original proof. As in
T. H. Colding’s case, we prove Proposition 2.9 by an induction argument. However,
there are some substantial differences: T. H. Colding constructed inductively n points
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p1, . . . , pn in the Abelian covering at large distance and such that the gradients of the
distance functions d(·, pi) are almost orthogonal. For this, he used harmonic smoothings
of the distance functions, the so-called almost splitting maps ϕ : X → Rn with controlled
average of ⟨∇ϕi,∇ϕj⟩ and Hessian (see Section 3.6.4 and Definition 3.9 in the next
chapter). Even if almost splitting maps are defined for RCD spaces, we did not follow this
path. We directly constructed mGH-isometries instead, relying on an almost splitting
theorem by A. Mondino and A. Naber [MN19] and a volume counting argument. In
particular, we only needed to control the gradient of excess functions and not their
Hessian. We briefly explain below our inductive argument.

The basis of induction is given by the following result, see Proposition 4.2 and Corol-
lary 4.3 in [MMP22].

Proposition 2.10. For any ε ∈ (0, 1) there exists δ1(ε,N) such that for any δ ∈
(0, δ1(ε,N)] and for any RCD(−δ,N) space (X, d, µ) with

b1(X) = ⌊N⌋, diam(X) = 1,

there exists x̄1 ∈ X, an RCD(0, N − 1) space (Yε,1, dYε,1 , µYε,1) and yε,1 ∈ Yε,1 such that

dmGH(BX(x̄, ε−1), BR×Yε,1((0, yε,1), ε−1)) < ε.

The proof of the previous statement relies on the almost splitting theorem [MN19,
Theorem 5.1] of A. Mondino and A. Naber. This roughly states the following. There
exists δ small enough such that if (X, d, µ) is an RCD(−δ,N) space, p, q are points in X
at a large enough distance and their excess function

x 7→ ep,q(x) = d(p, x) + d(q, x) − d(p, q),

and its derivative are controlled by δ, then there exists a large ball in X which almost
splits a line. This means that the ball is (measured) Gromov-Hausdorff close to a large
ball in a product R × Y for an RCD(0, N − 1) space (Y, dY , µY ). The almost splitting
theorem clearly applies as soon as the space has large enough diameter and the estimates
on the excess function hold.

In the case of the Abelian cover X, a consequence of the generalized Gromov’s
lemma is that X has infinite diameter. We then use Abresch-Gromoll excess estimates
(see [MMP22, Theorem 2.11]) and the references therein) to control the excess function.
This proof does not rely on the revised first Betti number being equal to ⌊N⌋.

As for the induction step we assume the following:

Assumption Ak. Let k ∈ {2, . . . , ⌊N⌋ − 1}. For any η ∈ (0, 1) there exists δk(η,N)
such that for all δ ∈ (0, δk(η,N)], if (X, d, µ) is a compact RCD(−δ2β, N) with

diam(X) = 1, b1(X) = ⌊N⌋

there exist x̄k ∈ X, an RCD∗(0, N − k) space (Yη,k, dYη,k
, µYη,k

) and yη,k ∈ Yη,k

dmGH(BX
η−1(x̄k), BRk×Yη,k

η−1 (0k, yk,η)) < η.

31



Chapter 2. Geometric aspects of RCD spaces

Under this induction assumption, we show [MMP22, Lemma 4.4] a lower bound on
the diameter of the space Yk,η that allows us to apply again the almost splitting theorem
to Yk,η and to conclude the proof of Proposition 2.9.

Proposition 2.11. If Ak holds, then there exist c, η0 ∈ (0, 1) only depending on N such
that for all η ∈ (0, η0] and δ ∈ (0, δk(η,N)]

diam(BYη,k(yk,η, η
−1)) > cη−1.

This uses a consequence of Gromov’s generalized lemma: any ball of radius R in X
contains at least ⌊R⌋b1(X) disjoint balls of radius 1/2 (see [MMP22, Corollary 3.3]). The
assumption b1(X) = ⌊N⌋, a contradiction and volume counting arguments then lead to
the above diameter bound.

Once Proposition 2.9 is proven, the first claim in Theorem 2.8 is a consequence of the
structure theory of RCD spaces developed in [MN19], of the constancy of the essential
dimension proven by [BS20] and of a result of [Hon20b]. We first obtain that the essential
dimension of the Abelian covering X is equal to ⌊N⌋. Since the covering map is a local
isomorphism of metric measure spaces, preserving the measures, X has also essential
dimension ⌊N⌋ and µ is absolutely continuous with respect to H⌊N⌋. Whenever N is
integer, [Hon20b, Corollary 1.3] implies that µ is a constant multiple of HN .

As for the second statement, we use equivariant Gromov-Hausdorff topology as in
[Col97] to show the following. Assume that (Xi, di, µi) is a sequence of RCD(−δi, N)
spaces with δi tending to zero, diam(Xi) = 1 and b1(Xi) = ⌊N⌋, with subgroups Γi

∼=
Z⌊N⌋ obtained as in the gerenalized Gromov’s lemma. Then there are points xi ∈ Xi such
that the sequence (Xi, dXi

,Γ′
i, xi) converge in equivariant Gromov-Hausdorff topology to

(R⌊N⌋, dR⌊N⌋ ,Z⌊N⌋, 0). As a consequence, the covering X ′
i = Xi/Γ′

i is Gromov-Hausdorff
close to the flat torus T⌊N⌋.

When N is integer, the fact that µ = cHN allows us to improve this Gromov-
Hausdorff convergence of metric spaces to measured Gromov-Hausdorff convergence of
metric measure spaces. Then we can apply an analogue result to the one of [CC00a] due
to V. Kapovitch and A. Mondino [KM21]: an RCD space which is measured Gromov-
Hausdorff close to a smooth compact manifold is bi-Hölder homeomorphic to it. The
conclusion finally follows by proving that Γi is torsion free, so that Xi = X ′

i.

2.5 Perspectives

We briefly present some perspectives related to our previous work.

RCD spaces which are not limit of manifolds

It is known that the spherical suspension X over RP2 is a compact stratified space
which is RCD without being the non-collapsed limit of Riemannian manifolds with Ricci
curvature bounded from below. Indeed, M. Simon [Sim12] proved that a non-collapsed
Gromov-Hausdorff limit of 3-manifolds with a lower bound on the Ricci curvature must
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be a topological manifold, which X is not. One may wonder if there are other examples
of RCD spaces that do not arise as non-collapsed, or collapsed, limits of manifolds: a
possible path could be to focus on simple RCD spaces such as manifolds with isolated
conical singularities of angle less than 2π and Ricci curvature bounded from below.
Even in this case, this problem is related to the difficult question of “desingularization”,
through Gromov-Hausdorff limits or possibly other techniques, such as Ricci flow.

Criteria for non-compact singular spaces to be RCD

Our criterion for stratified spaces to be RCD applies in the compact case: this is re-
lated mainly to the information on the regularity of the eigenfunctions of the Laplacian.
It would be interesting to study the analogue situation in the complete non-compact
case, possibly using harmonic functions and the heat kernel instead of eigenfunctions.
Studying harmonic functions on complete stratified space may be useful in itself, for
example in order to obtain information on the behaviour of minimal surfaces. The study
of minimal surfaces in non-smooth spaces has been recently addressed in the work of
A. Lytchak and S. Wenger [LW18b, LW18a, LW20] or of A. Mondino and D. Semola
[MS23].

We also point out that S. Honda studied in [Hon18] what he called “almost smooth
metric spaces”, and gave two possible criteria for them to be RCD spaces, that are proven
in the compact case. Similarly, Theorem 1.5 in [DWWW24] proves that a connected
closed manifold of dimension n ≥ 6 with a metric which is smooth and has a lower
bound on the Ricci curvature away from a closed singular set of codimension larger
than 6 is an RCD space. Any progress in the case of non-compact stratified spaces may
enlighten how to obtain similar results for other kinds of non-compact singular manifolds.

First Betti number of an RCD space

As we pointed out in the introduction of this chapter, the fact that the first fundamental
group of an RCD space is isomorphic to the group of deck transformations of its universal
cover allows one to define the first Betti number as the rank of the abelianization of the
fundamental group, as in the case of smooth manifolds. Yet, in the Riemannian setting,
b1(M) is also equal to the dimension of the first de Rham cohomology group, thanks to
Poincaré duality. N. Gigli and C. Rigoni [GR18] followed this approach to define the
first Betti number of an RCD space and used it to prove a Bochner theorem. Whether
the two possible definitions of the Betti number coincide is still an open and challenging
question in RCD theory, that we would like to address. However, considering the intense
activity in the study of RCD spaces in the past decade, this question might well find an
answer before we have significant advances in this direction.
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Chapter 3

Limits of manifolds with a Kato
bound on the Ricci curvature

This chapter is devoted to presenting the main results obtained in collaboration with
G. Carron and D. Tewodrose in [CMT24, CMT22, CMT23b, CMT23a].

3.1 Introduction
Since Gromov’s pre-compactness theorem, limits of manifolds with a lower Ricci bound
have been the object of a vast study: thanks to the work of many mathematicians,
M. Anderson, Bando, Kasue, Nakajima, J. Cheeger, T. H. Colding, G. Tian, A. Naber,
W. Jiang, we have now a good understanding of Ricci limits. Nevertheless, in many
interesting geometric situations, such as the study of singularities of geometric flows, of
variational problems or of moduli spaces of metrics, convergence of manifolds is needed
without having a uniform lower Ricci bound. For instance, in [Bam17, Bam18, BZ17,
Sim20a, Sim20b], the authors considered the Ricci flow with bounded scalar curvature;
in [TZ16] an Lp bound on the Ricci curvature is preserved along the Kähler-Ricci flow.
In the work of G. Tian and J. Viaclovsky [TV05a, TV05b, TV08] the authors studied
moduli spaces of what they defined as “extremal metrics”: these are metrics for which
the Laplacian of the Ricci tensor is equal to a linear combination of terms depending on
the Riemannian curvature and on the Ricci tensor as well. Such extremal metrics include
for example Bach-flat metrics, which are critical for the Weyl functional g 7→ ∥Weylg||2,
dual and anti-self dual metrics with constant scalar curvature, Kähler constant scalar
curvature metrics.

All of these problems motivate the study of weaker conditions on the curvature,
under which structure and regularity results for limit spaces can still be proved. Starting
from the work of S. Gallot, P. Petersen and G. Wei [Gal88, PW97, PW01], the case of
sequences of n-manifolds for which the negative part of the Ricci curvature satisfies a
uniform Lp bound, for p > n/2, has been widely studied: we refer to [DWZ18, Che22,
Ket21] for some recent results in this setting. In collaboration with G. Carron and
D. Tewodrose, we considered a condition which is weaker than the Lp bound and takes
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inspiration from Kato potentials in Rn, as defined by [Kat72, Sim82]. As we point out
below, a potential in Lp(Rn) for p > n/2 is a Kato potential, while there are Kato
potentials that do not belong to Lp(Rn). In order to illustrate our assumptions, we
observe that a well-known fact in Riemannian geometry is that the Ricci tensor can
be expressed, in harmonic coordinates, in terms of the Laplacian of the metric (see for
instance [Pet06, Lemma 49]):

Ricg = −1
2∆g +Q(g, ∂g),

where Q is a quadratic error term depending on the metric and its derivatives. As a
consequence, the condition Ricg ≥ K can be seen, roughly speaking, as ∆g ≤ −K:
this explains why it is reasonable to expect good regularity results for a converging
sequence of metrics that uniformly satisfies such an inequality. In our work together
with G. Carron and D. Tewodrose, the idea consists in replacing the operator ∆ by a
Schrödinger operator ∆g − V , where V is the negative part of the Ricci curvature, that
we denote Ric-. We then defined appropriate Kato bounds for sequences of manifolds
and developed a regularity theory for their limit spaces.

For a complete manifold (Mn, g) we defined the Kato constant kt(Mn, g) at time
t > 0 as the L∞ norm of the function obtained by integrating Ric- first against the
heat kernel of the Laplacian ∆g, then over time between 0 and t. A uniform bound on
kt(Mn, g) has been studied especially in the case of compact manifolds, see for instance
[Car19, Ros19, CR20, RS17, RW22], and a result of G. Carron [Car19] ensures pre-
compactness of sequences of closed manifolds {(Mn

α , gα, oα)}α∈A for which there exists
T > 0 such that kT (Mn

α , gα) ≤ 1/16n. Kato potentials on manifolds have also been
studied for example in [G1̈4, G1̈7, Dev19, Dev21].

In a series of paper [CMT24, CMT22, CMT23b, CMT23a] we considered three pos-
sible bounds on sequences of complete manifolds:

• a Dynkin bound, that is a uniform bound on kt(Mn
α , gα) by a constant only de-

pending on the dimension;

• a Kato bound, in which case there exists a bounded, non-negative, non-decreasing
function f tending to zero at zero and such that kt(Mn

α , gα) ≤ f(t) for all t and α;

• a strong Kato bound, for which the function f satisfies an additional integrability
condition that we illustrate below.

A first reason to introduce the Kato bound is to study tangent cones of the limit space,
that are limits of rescaled manifolds (Mn

α , ε
−2
α gα) with εα tending to zero: under a Kato

bound, the rescaling property of the Kato constant ensures that, for any fixed t > 0, the
Kato constants at time t of the rescaled manifolds (Mn

α , ε
−2
α gα) tends to zero as α goes

to infinity. One can see this as an analogue of what happens for tangent cones of Ricci
limits, which are approximated by rescaled manifolds of almost non negative curvature,
that is, Ricgα ≥ Kεα.
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There are two scenarios in the study of Gromov-Hausdorff limits of smooth manifolds:
the collapsing case, that is, the volume of a unit ball B(oα, 1) tends to zero along the
sequence; and the non-collapsing case, for which we have a uniform lower bound on
the volume of B(oα, 1). In our work, in both cases we obtained regularity results for
limits of manifolds satisfying a Dynkin, Kato or strong Kato bound. For collapsing
sequences of n-manifolds, we obtained k-rectifiability under a Dynkin bound, for some
k between 1 and n. If a Kato bound holds, we proved moreover Mosco convergence of
the energies and, for closed manifolds, of the spectra of the Laplacians. In the case of
non-collapsing n-manifolds with a strong Kato bound, we proved that tangent cones are
metrics cones, volume continuity, a stratification result and Reifenberg regularity. Our
work extends the classical Cheeger-Colding theory and many of the known results in the
case of Lp-bounds, under a much weaker bound. Our results have been applied in order
to obtain a torus stability result in [CMT23b], or in the setting of Ricci flow by M. Lee
[Lee24], who proved that a compact 3-dimensional non-collapsed strong Kato limit is
homeomorphic to a smooth manifold.

In the following, we present our main results and the definitions needed to precisely
state them, together with the strategy of some chosen proofs. In [CMT24, CMT22], we
considered sequences of closed manifolds; the main result of [CMT23a] allowed us to
improve and extend our previous work to the complete case thanks to the use of RCD
theory. In this memoir, we underline the significant aspects of our work that distinguish
it from the previous literature concerning convergence of manifolds. First of all, we
make use of the tools for convergence of PI-Dirichlet spaces, which lead in particular to
heat kernel convergence without any synthetic curvature assumption. This allows us to
obtain, for example, energy convergence, or the fact that tangent cones of Kato limits are
RCD(0, n) spaces. We also introduce new monotone quantities based on a heat kernel
ratio, instead of relying on the volume density as in Cheeger-Colding theory, and use
them to prove, for instance, that tangent cones of non-collapsed strong Kato limits are
metric cones, or to obtain new almost rigidity results. One of the difficulties in relying
on the heat kernel rather than on the volume density, is that this latter quantity is local,
while the heat kernel is global. However, in some cases we are able to perform direct
proofs instead of proofs by contradiction, that are extensively used in Cheeger-Colding
theory: see for example the proof that tangent cones are metric cones, presented in
subsection 3.6.4.

In many of our proofs in [CMT24, CMT22], a key role is played by a Li-Yau inequality
that was first proven in the compact case by G. Carron in [Car19]. This restriction
was dropped, thanks to the fact that our results in [CMT23a] guarantee existence of
good cut-off functions on complete manifolds satisfying a Dynkin bound: this allows
us to obtain the Li-Yau inequality in the complete case as well. As a consequence,
the strategies of [CMT24, CMT22] apply also in the complete case: we present them
here without assuming compactness. We believe that our approach, which does not
need classical tools of Cheeger-Colding theory such as the almost splitting theorem or
segment inequality, and which lightly uses RCD theory, could prove itself relevant to
other settings.
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3.2 Kato potentials in Rn

Kato potentials were introduced by Kato in 1972 [Kat72] and then extensively studied
in the setting of Euclidean space, see for instance [Sim82, AS82]. We recall here few
basic facts about them.

The Kato constant of a locally integrable, non-negative function V is the L∞-norm
of the function obtained by integrating twice V , first against the heat kernel of the
Laplacian and then over time. We define a Kato potential as follows.

Definition 3.1. Let V ∈ L1
loc(Rn), V ≥ 0, t > 0. The Kato constant of V at time t is

given by

kt(V ) = sup
x∈Rn

ˆ t

0

ˆ
Rn

(4πs)− n
2 exp

(
−|x− y|2

4s

)
V (y) dy. (3.1)

A potential V is said to be a Kato potential if

lim
t→0

kt(V ) = 0. (3.2)

One good property of a Kato potential V is that the heat semi-group associated to
the Schrödinger operator ∆ − V has a behaviour “close” to the one of the heat semi-
group of the Laplacian, in the following sense (we refer to [Sim82, Theorem A.2.1] for
the proof):

Proposition 3.1. Consider V ∈ L1
loc(Rn), V ≥ 0. Then V is a Kato potential if and

only if the operator
e−t(∆−V ) : L∞(Rn) → L∞(Rn),

is bounded and satisfies

lim
t→0

∥e−t(∆−V ) − e−t∆∥∞,∞ = 0. (3.3)

This allows one to recover regularity properties for solutions of the Schrödinger equa-
tion (∆−V )u = 0, with a potential V which is not necessarily in Lp. Indeed, it is known
that for p > n/2, functions in Lp

loc(Rn) are Kato potentials, see Example E in [Sim82],
but the following gives an easy example of a Kato potential not belonging to Lp(Rn).
Example 3.2. It is proven in [Sim82, Proposition A.2.4] that a function V ∈ L1

loc(Rn),
V ≥ 0 is a Kato potential if and only if the function

f(x) =
ˆ

B(x,1)

V (y)
|x− y|n−2 dy,

is continuous. This in turns gives conditions for radial functions to be Kato potentials.
In particular, the function

V (r) = r−2 ln(r)−α,

is a Kato potential for any α > 1 and it does not belong to Lp(Rn) for any p > n
2 .
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3.3 Kato bounds on manifolds
Let (Mn, g) be a complete Riemannian manifold and Ricg its Ricci curvature. We define
the first eigenvalue of Ricg at a point x ∈ M by

ρ(x) = inf
v∈TxM,gx(v,v)=1

Ricgx(v, v).

The negative part of Ricg is then defined as the negative part of ρ:

Ric-(x) =
{

0 if ρ(x) ≥ 0
−ρ(x) otherwise.

Observe that Ric- is a non-negative function such that for any x ∈ M we have
Ricgx ≥ − Ric-(x). We define the Kato constant of a manifold as the Kato constant
of Ric-.

Definition 3.2 (Kato constant). Let (Mn, g) a complete Riemannian manifold, ∆g its
Laplacian and H : R+ ×M ×M → R+ its heat kernel. Let t > 0. The Kato constant of
M at time t is given by

kt(M, g) = sup
x∈M

ˆ t

0

ˆ
M
H(s, x, y) Ric-(y) d volg(y) ds.

In the case of closed manifolds, the analytic and geometric consequences of a bound
on the Kato constant

kT (M, g) ≤ Cn, (3.4)

for a positive dimensional constant Cn and a fixed time T have been studied in [Car19,
Ros19, CR20, RS17, RW22]. Many similar properties to the ones of manifolds with non-
negative Ricci curvature have been obtained: for instance, a lower bound on the first
non-zero eigenvalue of the Laplacian [Car19], an upper bound on the first Betti number
[Car19, Ros19], a Myers diameter theorem [CR20]. G. Carron proved pre-compactness
in Gromov-Hausdorff topology of closed manifolds which satisfy (3.4) with Cn = 1/16n:
this result represented the starting point to develop a regularity theory for limits of
manifolds with a uniform bound on the Kato constant.

However, the scaling properties of the Kato constant make it clear that a bound
as (3.4) may not be enough to obtain fine structure results. Indeed, the local ge-
ometry of a metric space can be studied in terms of tangent cones, which in the
case of a limit of smooth manifolds {(Mα, gα, oα)}α∈A are limits of rescaled manifolds
{(Mα, ε

−2
α gα, xα)}α∈A, where εα goes to zero as α tends to infinity. In the case of a

bound (3.4), the scaling properties of the Ricci tensor, heat kernel and volume measure
lead to

kt(Mα, ε
−2
α gα) = kεαt(Mα, gα) < Cn. (3.5)

This means that for sequences of rescaled manifolds, there is no improvement in assump-
tion (3.4), in opposition to the case of a Ricci lower bound, where a tangent cone is a
limit of manifolds with almost non-negative Ricci curvature.
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We observe that in the Euclidean space, a function is a Kato potential if its Kato
constant goes to zero as t tends to zero. As a consequence, when having a sequence of
manifolds, the idea is to uniformly control not only their Kato constants at some fixed
time T , but also the way in which they tend to zero with time. This motivated the
introduction of the following conditions.

Definition 3.3 (Dynkin and Kato bounds). Let n ∈ N. A sequence of complete Rie-
mannian manifolds {(Mn

β , gβ, oβ)}β∈B satisfies a Dynkin bound (D) if there exist T > 0
and γ ∈ (0, 1/n− 2) such that for all β ∈ B we have

kT (Mβ, gβ) ≤ γ <
1

n− 2 . (D)

The sequence satisfies a Kato bound (K) if there exist T > 0 and a non-decreasing
function f : (0, T ] → R+ such that

f(T ) ≤ 1
3(n− 2) (D’)

lim
t→0

f(t) = 0 (3.6)

for all t ∈ (0, T ], β ∈ B, kt(Mβ, gβ) ≤ f(t). (3.7)

The Kato bound is said to be strong if moreover there exists Λ > 0 such that
ˆ T

0

f(t)
t
dt ≤ Λ. (SK)

In dimension 2, we say that a sequence of surfaces {M2
β , gβ)}β∈B satisfies a Dynkin

bound whenever there exists T > 0 such that for all β ∈ B we have kT (Mβ, gβ) < ∞:
we explain in Section 3.5 why in the case of surfaces we do not need any restriction on
the bound on the Kato constant in order to obtain regularity results.

Conditions (3.6) and (3.7) together with the re-scaling property of the Kato constant
ensure that for any t ∈ (0, T ] and (εβ)β such that εβ → 0 we have

lim
β→∞

kt(Mβ, ε
−2
β gβ) ≤ lim

β→∞
f(εβt) = 0,

this giving hopes to obtain results on tangent cones.
As for (SK), it is usually called in the literature a “Dini condition”, as it is similar

to the Dini criterion for the convergence of Fourier series. When f is replaced by its
modulus of continuity, this condition is used in different settings, from harmonic analysis
and regularity theory to dynamical systems, see for instance [KZ22, KZ23, DPLM17,
Bou24, LZ00, FJ01] and the references therein. We use this condition to define an
appropriate almost monotone quantity based on the heat kernel and to show that, in
the non-collapsed case, tangent cones are metric cones. Observe that the strong Kato
bound is implied by the following assumptions.
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1. A lower bound on the Ricci curvature. Indeed, the lower bound Ricgα ≥ −K
implies kt(Mα, gα) ≤ Kt, thus the strong Kato bound.

2. A smallness condition on the Lp norm of Ricci: a result of P. Stollmann and C. Rose
[RS17] ensures that for any p > n

2 there exists ε(n, p) such that if ∥ Ric- ∥p < ε(n, p),
then the strong Kato bound holds.

3. In dimension n ≥ 4, if the scalar curvature is bounded and the Q-curvature is
bounded from below (see [CMT24, Proposition 2.20]).

4. A Morrey bound on the negative part of Ricci: for any x ∈ (Mα, gα) and
r ∈ (0,

√
T/2]

r2
 

B(x,r)
Ric- d volgα ≤ Λ

(
r√
T

)δ

.

3.4 Main results
In the following, we give an overview of the main results that we obtained in [CMT24,
CMT22, CMT23b, CMT23a] for limits of manifolds.

In [CMT23a] we proved the following pre-compactness result for complete manifolds
satisfying a Dynkin bound, extending the previous result of G. Carron.

Proposition 3.3. Let {(Mβ, gβ, oβ)}β∈B be a sequence of complete pointed Riemannian
manifolds satisfying a Dynkin bound (D). Let µβ = vgβ

(B(oβ,
√
T ))−1vgβ

, where vgβ
is

the Riemannian measure associated to gβ. Then there exist a subsequence A ⊂ B and a
pointed metric measure space (X, d, µ, o) such that {(Mα, dgα , µα, oα)}α∈A converges to
(X, d, µ, o) in pointed measured Gromov-Hausdorff topology.

The above pre-compactness put us in a position to define the following classes of
metric measure spaces.

Definition 3.4. A metric measure space (X, d, µ, o) is called a Dynkin limit (respec-
tively a Kato limit) if there exists a sequence of complete pointed Riemannian man-
ifolds {(Mα, gα, µαoα)}α∈A, where µα is defined as above, satisfying (D) for some
γ ∈ (0, 1/n− 2), T > 0 (respectively the Kato bound (K)) and converging to (X, d, µ, o).

Even in the case of a Dynkin bound, in [CMT23a] we were able to prove a structure
result for Dynkin limits:

Theorem 3.4. Let (X, d, µ, o) be a Dynkin limit. Then there exist N > n, C,K > 0 only
depending on γ and n, a distance d and a measure µ such that d ≤ d ≤ Cd, µ ≤ µ ≤ Cµ
and the space (X, d, µ) is an RCD(−K/T,N) space.

In other words, a Dynkin limit is bi-Lipschitz equivalent to an RCD space. In the
case of surfaces, we obtained moreover that, without any restriction on the bound γ on
the Kato constant, (X, d) is a 2-dimensional Alexandrov space with curvature bounded
from below.
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In [CMT24] we had previously shown that for a Kato limit of closed manifolds such
that the Kato constant is bounded by 1/16n instead of 1/3(n − 2), tangent cones are
RCD(0, n) spaces, with the same n as the dimension of the manifolds. In [CMT22] we
obtained a rectifiability result for these Kato limits. We improved both of these results
in [CMT23a]. More precisely we have:

Corollary 3.5. Let (X, d, µ, o) be a Dynkin limit. Then there exists j ∈ {1, . . . , n} such
that X is j-rectifiable.

The fact that a Dynkin limit carries a distance and measure that make it and
RCD(K,N) space for some N > n, but it is j-rectifiable for some j not larger than n
is due to the lower semi-continuity of the essential dimension proven in [Kit19, BPS21].
Observe that an RCD(K,N) space of essential dimension j is not always an RCD(K, j)
space. Indeed, G. Wei and J. Pan [PW22] constructed an example of a collapsed Ricci
limit which is RCD(0, N) for N > 2 and has essential dimension equal to 2. Observe that
in this case the limit measure is not absolutely continuous with respect to the Hausdorff
measure. We also refer to S. Honda’s survey [Hon20a] and the conjectures therein for
more on this subject.

The two previous results implies that tangent cones of a Dynkin limit are all
RCD(0, N) spaces, not necessarily RCD(0, n), and moreover µ-almost everywhere
unique, equal to the j-dimensional Euclidean space endowed with a multiple of the
Hausdorff measure. However, in the case of Kato limits, we were able to obtain that all
tangent cones at any point are RCD(0, n) spaces.

Corollary 3.6. Let (X, d, µ, o) be a Kato limit. Then for all x ∈ X, any tangent cone
(Y, dY , µY , x) of X at x is an RCD(0, n) space.

Corollaries 3.5 and 3.6 extend the results obtained by J. Cheeger and T. Colding
[CC00a, Theorem 5.7] and by T. Colding and A. Naber [CN12] in the case of Ricci limit
spaces.

Another significant property that distinguishes Kato limits from Dynkin limits is
that the pointed measured Gromov-Hausdorff convergence improves to the appropriate
convergence of the Cheeger energies.

Theorem 3.7. Let (X, d, µ, o) a Kato limit and {(Mn
α , gα, µα, oα)} be a sequence of

manifolds satisfying a Kato bound, converging to (X, d, µ, o). For every u ∈ C1
c (Mα) let

Eα(u) =
ˆ

M
|du|2 dµα.

Then the Dirichlet energies {Eα}α Mosco converge to the Cheeger energy Ch of
(X, d, µ, o).

We refer to [CMT24, Section 1.4.3] for the precise definition of Mosco convergence.
The previous statement was proven firstly in [CMT24], then extended to complete ones
thanks to [CMT23a]. We point out that, for RCD spaces, pointed measured Gromov-
Hausdorff convergence always implies Mosco convergence of the Cheeger energy, see
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[GMS15, AH17]. In order to prove Theorem 3.7, we can exploit RCD theory even
if a Kato limit is not an RCD space. We can also obtain energy convergence using
an argument that depends on the Li-Yau inequality and on heat kernel convergence
for Dirichlet spaces: this method does not need any synthetic curvature bound in the
compact case. We refer to Section 3.6.3 for more details on both strategies of proof.

We obtained stronger structure results when assuming the strong Kato bound and
non-collapsing. We define non-collapsed strong Kato limits as follows.

Definition 3.5. A pointed metric space (X, d, o) is a non-collapsed strong Kato limit
if there exists a sequence of pointed complete Riemannian manifolds {(Mα, gα, oα)}α∈A

that satisfies the strong Kato bound (SK), is non collapsed, that is, for some v > 0

vgα(B(oα,
√
T )) ≥ vT

n
2 , (NC)

and converges in pointed Gromov-Hausdorff topology to (X, d, o).

Observe that in the definition of non-collapsed strong Kato limits we only consider
pointed Gromov-Hausdorff convergence and we do not require convergence of the Rie-
mannian measures: indeed, we proved that in this case the convergence automatically
improves to measured Gromov-Hausdorff convergence. Together with this volume con-
tinuity, in [CMT24, CMT22, CMT23a] we proved the following regularity results.

Theorem 3.8. Let (X, d, o) be a non-collapsed strong Kato limit. Then the following
hold.

1. The Hausdorff dimension of X is equal to n.

2. Tangent cones are metric cones. For any x ∈ X and for any tangent cone
(Y, dY , x) at x there exists a metric space (Z, dz) such that (Y, dY , x) is isometric
to the metric cone over Z.

3. Volume continuity. For any r > 0 and xα ∈ Mα converging to x,

vgα(B(xα, r)) → Hn(B(x, r)).

4. Stratification. For any k ∈ {0, . . . , n} let

Sk(X) = {x ∈ X s.t. for any tangent cone (Y, dY , x) ∄(Z, dZ) s.t. Y = Rk+1×Z},

then dimH(Sk(X)) ≤ k. Moreover Sn−1(X) = ∅ and Hn(Sn−2(X)) = 0.

5. Reifenberg regularity. Let R = X \ Sn−2. Then for any ν ∈ (0, 1) there exists
an open set Uν ⊂ X such that R ⊂ Uν and Uν is bi-Hölder diffeomorphic to a
Cν-manifold.
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All the previous statements recover under a much weaker assumption what was
known for Ricci limits thanks to Cheeger-Colding’s theory [CC97, CC00a, CC00b] and
for limits of manifolds with an Lp bound on the negative part of the Ricci curvature
[Yan92a, Yan92b, PW97, PW01, DWZ18, Ket21]. Our proofs often rely on the ap-
propriate comprehension of the behaviour of the heat kernel or the heat semi-group,
and they take advantage of the recent tools for the convergence of Dirichlet spaces
and the theory of RCD spaces. In some cases, we avoided arguments by contradiction,
that are extensively used in Cheeger-Colding’s theory and related work, see for instance
[CN15, JN21, CJN21], and provided direct proofs, for example in showing that tangent
cones are metric cones or when giving a quantitative version of Reifenberg regularity.

We conclude this review of our main results with a geometric application, obtained
in [CMT23b], which generalizes J. Cheeger and T. H. Colding’s torus stability result
[CC00a, Col97] for manifolds with a small Kato constant.

Theorem 3.9 (Torus stability). For any ε ∈ (0, 1) there exists δ(ε, n) > 0 such that if
(Mn, g) is a closed Riemannian manifold of diameter D satisfying

b1(M) = n and kD2(Mn, g) ≤ δ(n, ε),

then there exists an εD-Gromov-Hausdorff isometry between M and a flat torus. More-
over, let f : [0, 1] → R+ be a non-decreasing function satisfying (SK): then there exists
δ(n, f) such that if

b1(M) = n, kD2(Mn, g) ≤ δ(n, f),

and
ktD2(Mn, g) ≤ f(t) for all t ∈ (0, 1],

then M is diffeomorphic to a flat torus.

We point out that since an Lp smallness condition on the Ricci curvature implies
a strong Kato bound, the previous theorem applies for Lp bounds, for which such a
topological result was previously unknown.

3.5 From Kato to RCD

In this section we present the main result of [CMT23a] and we briefly explain how this,
combined with RCD theory, allows us to obtain results on Dynkin and Kato limits, and
on smooth complete manifolds.

By using classical properties of Schrödinger operators, we showed that a bound on
the Kato constant of a complete manifold implies the existence of a conformal change
under which the obtained weighted manifold is an RCD space. More precisely, we have
obtained:

Theorem 3.10. Let (Mn, g) be a complete Riemannian manifold.
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1. Assume that there exist T > 0 and γ ∈ (0, 1/(n− 2)) such that

kT (Mn, g) ≤ γ. (D)

Then there exist K ≥ 0, C > 0 and N > n depending on n and γ only,
and f ∈ C2(M) with 0 ≤ f ≤ C, such that the weighted Riemannian manifold
(M, e2fg, e2fvg) is an RCD(−K/T,N) space.

2. If moreover
kT (Mn, g) ≤ 1

3(n− 2) , (D’)

then the constants K,N and C can be chosen to be K = 4kT (Mn, g),
N = n+ 4(n− 2)2kT (Mn, g) and C = 4kT (Mn, g).

The proof of the previous theorem relies on studying the properties of the Schrödinger
operator ∆g −λRic-, for a carefully chosen parameter λ only depending on γ and n. We
show that under the assumption (D), there exists β > 0 depending on γ and n and a
function φ, bounded between 1 and eβT , such that

∆gφ− λRic-φ ≥ −2βφ.

We then set f = λ−1 log(φ) and use the appropriate transformation rule to show
that the weighted manifold (M, e2fg, e2fvg) satisfies a Bakry-Émery inequality.

In dimension 2, the existence of the function φ is guaranteed without any restriction
on γ: whenever the Kato constant is finite, there exists a conformal metric with Gauss
curvature bounded from below.

3.5.1 Consequences on Dynkin and Kato limits

Pre-compactness for manifolds satisfying a Dinkin bound, as stated in Proposition 3.3,
directly follows from the previous statement. Indeed, the uniform bound on the con-
formal change given by Theorem 3.10 ensures that a complete manifold (Mn, g) which
satisfies (D), seen as a metric measure space, is bi-Lipschitz equivalent to the correspond-
ing weighted manifold (M, e2fg, e2fvg), which is an RCD(−K/T,N) space. Therefore,
pre-compactness directly follows from the pre-compactness of RCD spaces with respect
to pointed measured Gromov-Hausdorff convergence.

As for Theorem 3.4, a Dynkin limit (X, d, µ, o) is such there exists a sequence of
pointed manifolds {(Mβ, gβ, µβ, oβ)}β∈B satisfying (D) and converging to (X, d, µ, o). By
Theorem 3.10, there exists a uniformly bounded sequence of positive functions (fβ)β∈B

such that the weighted manifolds (Mβ, e
2fβgβ, e

2fβµβ, oβ) are RCD(−K/T,N) spaces,
or, in the case of surfaces, have Gauss curvature bounded from below. We can then
use pre-compactness of RCD spaces or of Alexandrov spaces in dimension 2, in order to
obtain that the sequence of weighted manifolds converge to the RCD space (X, d, µ, o),
or to an Alexandrov space in dimension 2. The uniform boundedness of (fβ)β∈B implies
the desired control of d and µ.
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As we recalled in the previous chapter, an RCD(K,N) space is k-rectifiable for
some k ∈ {0, . . . , ⌊N⌋}, the so-called essential dimension. But the essential dimension is
lower semi-continuous with respect to pointed measured Gromov-Hausdorff convergence,
thanks to [Kit19, BPS21]. Therefore, since a Dynkin limit is a limit of n-dimensional
manifolds, its essential dimension must be not larger than n: this leads to Corollary 3.5.

In the case of Kato limits, observe that in the second point of Theorem 3.10 we have
an explicit dependence of K and N on the Kato constant. This allows us to prove that
all tangent cones at any point are RCD(0, n) spaces. As this property was not explicitly
proven in [CMT23a], we give a proof here.

Proof of Corollary 3.6. By definition of a Kato limit and of tangent cones, there exist
a sequence of manifolds {(Mn

α , gα, µα, oα}α∈A satisfying the Kato bound of Definition
3.3 and converging to (X, d, µ, o), a sequence of points {xα}α∈A and {εα}α∈A, εα > 0
and εα → 0 such that the re-scaled sequence {(Mα, ε

−2
α gα, µα(B(xα, εα))−1µα, xα}α∈A

converges to (Y, dY , µY , x). Denote by d̃α and µ̃α the distance and measure of each
rescaled manifold. We know that

kT (Mα, ε
−2
α gα) = kε2

αT (Mα, gα) ≤ f(ε2
αT ) ≤ 1

3(n− 2) . (3.8)

Then we can apply Theorem 3.10 to each rescaled manifold: we find uα ∈ C2(Mα) such
that

0 ≤ uα ≤ 4kT (Mα, ε
−2
α gα), (3.9)

and (Mα, e
2uαε−2

α gα, e
2uαµα(B(xα, εα))−1µα) is an RCD(−Kα/T,Nα) space, where

Kα = 4kT (Mα, ε
−2
α gα) Nα = n+ 4(n− 2)2kT (Mα, ε

−2
α gα). (3.10)

Denote by dα the distance associated to e2uαε−2
α gα and by µα = e2uαµα(B(xα, εα))−1µα.

Thanks to the uniform Kato bound, we know that (Mα, dα, µα) is an
RCD(−4f(ε2

αT )/T, n + 4(n − 2)2f(ε2
αT )) space. Since f tends to zero in zero, for any

ν > 0 there exists αν large enough such that for all α ≥ αν the weighted manifolds
(Mα, dα, µα) are RCD(−4ν/T, n + 4(n − 2)2ν) spaces. By pre-compactness of RCD
spaces and using Theorem 3.4, for any ν > 0 the tangent cone Y is endowed with a
distance dν and a measure µν such that

dY ≤ dν ≤ e4νdY and µY ≤ µν ≤ e4νµY ,

(Y, dν , µν , x) is an RCD(−4ν/T, n + 4(n − 2)2ν) space and the weighted manifolds
(Mα, dα, µα, xα) converge to (Y, dν , µν , x). But as ν tends to zero, dν and µν converge
to dY and µY , so that (Y, dY , µY , x) is an RCD(0, n) space.

3.5.2 Consequences on manifolds

Theorem 3.10 allows us to obtain the following results on a complete manifold (Mn, g)
satisfying (D):
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• the Riemannian measure is doubling: there exists θ only depending on n and γ
such that for all x ∈ M and r ∈ (0,

√
T/2), we have vg(B(x, 2r)) ≤ θvg(B(x, 2r));

• an L1 Poincaré inequality holds with a constant λ only depending on n and γ;

• there exist good cut-off functions, that is, for any x ∈ M and r ∈ (0,
√
T ) there

exists χx,r equal to one on B(x, r/2), vanishing outside B(x, r) and such that for
some constant C(n, γ) we have

|dχx,r|2 + |∆gχx,r| ≤ C(n, γ)
r2 .

We refer to Section 4 in [CMT23a] for the precise statements of the above properties.
We also proved the following almost monotonicity for the volume ratio.

Theorem 3.11. Let T > 0 and f : (0, T ] → R+ (Mn, g) be a non-decreasing function
satisfying (3.6) and (SK). Let (Mn, g) be a complete manifold such that for all t ∈ (0, T ]
we have kt(Mn, g) ≤ f(t). Then for any x ∈ M , R ∈ (0,

√
T ], η ∈ (1/

√
2, 1) and

r ∈ (0, ηR) we have

vg(B(x,R))
Rn

≤ exp
(

− C(n)
log(η)

ˆ R

r

f(s2)
s

ds
)
vg(B(x, r)

rn
.

This allows us to show that on a non-collapsed strong Kato limit (X, d, o), the volume
density

ρX(x) = lim
r→0+

Hn(B(x, r))
ωnrn

,

is well-defined at any point x ∈ X. We refer to Section 3.6.4 for a discussion about
monotone quantities and their role in proving regularity for non-collapsed strong Kato
limits.

We conclude this section by observing that in the compact case and under the slightly
stricter bound

kT (Mn, g) ≤ 1
16n, (Dyn)

Theorem 3.10 is not needed to obtain neither pre-compactness, nor the doubling property
of the measure [CMT24, Proposition 2.3] (see also Propositions 3.8 and 3.11 in [Car19]).
For compact manifolds (Mn, g) satisfying (Dyn), we used a Li-Yau inequality originally
obtained in [Car19] to obtain the doubling property of the Riemannian measure vg:
pre-compactness then follows directly from the well-known result of Gromov, without
relying on RCD theory.

3.6 Strategies of chosen proofs
In this section we present the main tools and techniques that we used in the proofs of
[CMT24, CMT22, CMT23b]: in those articles, we considered closed manifolds. Thanks
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to the existence of good cut-off functions for complete manifolds satisfying (D), our
strategies can be extended from only closed to complete manifolds. One of the interests
of our approach is that it is based on convergence results for Dirichlet spaces and in
particular on heat kernel convergence, without assuming a Ricci lower bound. As pointed
out by N. Gigli in [Gig23, Section 4], this can also be used to obtain stability of the heat
flow, for which the known proof in the setting of CD spaces relies on optimal transport.

A key point in many of our proofs is a Li-Yau inequality, that holds under the
assumption that the Kato constant is smaller than 1/16n, where n is the dimension of
the manifold. As a consequence, throughout this section we assume (Mn, g) to be a
complete manifold that for some T > 0 satisfies (Dyn).

3.6.1 The Li-Yau inequality

In [Car19, Proposition 3.3], Carron showed a Li-Yau inequality for positive solutions of
the heat equation on a compact manifold such that (Dyn) holds. As we pointed out
in [CMT23a, Remark 4.5], this inequality can be extended to complete manifolds and
improved to obtain the following.

Theorem 3.12. Let (Mn, g) be a complete manifold such that for some T > 0 we have
(Dyn). Let u : [0, T ]×M → R+ be a positive solution of the heat equation (∂t +∆)u = 0.
Then on [0, T ] ×M we have

e−5kt(M,g)|∇ log u|2 − ∂t log u ≤ n

2te
5kt(M,g). (LY)

For closed manifolds, we obtained (LY) with the same proof as in [Car19, Proposition
3.3], by choosing the parameter δ to be equal to kT (M, g)2n2/(n + 1). The complete
case is obtained thanks to the existence of good cut-off functions proven in [CMT23a].
We point out that in the first version of this inequality in [Car19], the exponent in the
exponentials contained the square root of kt(Mn, g) instead of just kt(Mn, g).
Remark 3.13. The reason for having 16n in the denominator is technical and depends
on the proof of Lemma 3.2 in [Car19].

The previous inequality gives a first intuition, independent of RCD spaces, of the
reason why tangent cones of Kato limits should have non-negative Ricci curvature in
a generalized sense. Indeed, a tangent cone at a point x of a Kato limit (X, d, µ, o)
is a metric measure space (Y, dY , µY , x) obtained as a limit of rescaled manifolds
(Mα, ε

−2
α gα, volgα(B(xα, εα))−1 volgα , xα), where εα tends to 0 and xα tends to x as

α goes to infinity. For these rescaled manifolds, for any t ∈ [0, T ] we have

kt(Mα, ε
−2
α gα) → 0 as α → ∞,

and moreover the Li-Yau inequality (LY) holds. As a consequence, if we were able to
pass to the limit in inequality (LY), the exponential terms would tend to 1, and we
would obtain the following inequality on tangent cones

|∇ log u|2 − ∂t log u ≤ n

2t . (LY0)
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This latter inequality coincides with the classic Li-Yau inequality on manifolds of di-
mension n with non-negative Ricci curvature; it also holds on RCD∗(0, n) spaces thanks
to [GM14]. Thus tangent cones of Kato limits should have non-negative Ricci curvature
in some sense. In order to make this intuition rigorous we need the appropriate notion
of heat kernel convergence. The setting in which we developed our theory is the one of
PI-Dirichlet spaces, that is, Dirichlet spaces whose measure is doubling and that carry a
Poincaré inequality. As we recalled in the previous section, manifolds satisfying (D) have
these properties. For sequences of (uniformly) PI-Dirichlet space, we have good notions
of convergence for the energies and heat kernel: we present below the pre-compactness
theorem that we need.

3.6.2 PI-Dirichlet spaces, energy and heat kernel convergence

In the following, we give some essential background on PI-Dirichlet spaces and heat
kernel convergence: we refer to [CMT24, Section 1] for the details.

Definition 3.6. Fix θ,γ, R > 0. A PIθ,γ(R) Dirichlet space is a regular, strongly local
Dirichlet space (X, d, µ, E) such that

• (X, d, µ) is θ-doubling at scale R, that is, for all x ∈ X and r ∈ (0, R/2]

µ(B(x, 2r) ≤ θµ(B(x, r));

• for any r ∈ (0, R] and ball B of radius r, for any u ∈ D(E) the following Poincaré
inequality holds ∥∥∥∥u−

 
B
u

∥∥∥∥
L2(B,µ)

≤ γr2
ˆ

B
dΓ(u, u), (3.11)

where Γ is the carré du champ associated to E .

As we recalled in the previous chapter, any Dirichlet space (X, d, µ, E) carries a non-
negative definite self-adjoint operator L associated to the Dirichlet form E . Moreover,
L generates an analytic sub-Markoviam semigroup (Pt := e−tL)t>0 acting on L2(X,µ)
and satisfying 

d
dtPt f = −L(Pt f) ∀t > 0,

lim
t→0

∥Pt f − f∥L2(X,µ) = 0.

We usually refer to {Pt}t>0 as the heat semi-group. An important property of a
PI-Dirichlet space is that it also carries a Hölder continuous heat kernel, that is,
H : (0,∞) ×M ×M → R satisfying for any f ∈ L2(X,µ), t > 0 and µ-a.e. x ∈ X

Ptf(x) =
ˆ

X
H(t, x, y)f(y) dµ(y).

In order to state the pre-compactness result that we need, we also introduce the
intrinsic distance associated to the carré du champ.
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Definition 3.7. Let (X, d, µ, E) be a regular, strongly local Dirichlet space. The intrin-
sic extended pseudo-distance dE associated with E is defined by

dE(x, y) := sup{|f(x) − f(y)| : f ∈ C(X) ∩ Dloc(E) s.t. Γ(f) = ρµ, |ρ| ≤ 1µ-a.e. on X}.

The pre-compactness result for PI-Dirichlet spaces then reads as follows (we refer to
[Kas05, KS03] for earlier versions of this statement).
Theorem 3.14. Let η > 1, θ,γ, R > 0 and {(Xβ, dβ, µβ, Eβ, oβ)} be PIθ,γ(R) Dirichlet
spaces such that

η−1 ≤ µβ(B(oβ, R)) ≤ η.

Then there exist a subsequence A ⊂ B and a regular, strongly local Dirichlet space
(X, d, µ, E , o) such that {(Xα, dα, µα, oα)}α∈A converges to (X, d, µ, o). Moreover the
following holds.

1. The Dirichlet space (X, dE , µ, E , o) is a PIθ,γ(R) space.

2. The Dirichlet forms (Eα)α Mosco converge to E. In particular, for any t > 0
the heat kernels Hα(t, ·, ·) converge uniformly on compact sets to the heat kernel
H(t, ·, ·) of (X, dE , µ, E , o).

3. There exists c > 0 such that cdE ≤ d ≤ dE .
The parameters θ and γ must be the same for all spaces in the sequence. We can

apply this result to sequences of manifolds {(Mn
β , gβ, vgβ

, Eβ, oβ)}β∈B which satisfy (D)
because the constants appearing in the doubling property and the Poincaré inequality
only depend on the dimension n of the manifolds (see [CMT23a, Section 4] and [CMT24,
Proposition 2.3]).

We underline that there is a priori a substantial difference between the intrinsic
distance dE associated to the limit energy E and the limit distance d obtained through
the Gromov-Hausdorff convergence: even if they are bi-Lipschitz equivalent, the limit
space is a PI-Dirichlet space only when endowed with the intrinsic distance. The heat
kernel is then associated to (X, dE , µ, E) and not to (X, d, µ, E). Moreover, there are
explicit examples for which the intrinsic distance and the limit distance do not coincide.
In [ACT21], the authors constructed a sequence of conformal metrics on the flat tori
whose associate distances converge in Gromov-Hausdorff topology to a Finsler metric.
More precisely, consider the standard flat torus Tn = Rn/Γ, where Γ = (2πZ)n, with
the Euclidean metric g0. For any integer ℓ > 1 define the function fℓ by

enfℓ(x1, . . . , xn) = 1 − 1
2 cos(ℓx1),

and the conformal metrics gℓ = e2fℓg0. Set µℓ = volgℓ
and Eℓ as in (2.2). It is possible

to show that the sequence {(Tn, dgℓ
, µℓ, Eℓ)}ℓ satisfies the assumptions of the previous

theorem, therefore it converges up to a subsequence to a pointed metric measure space
(X, d, µ, o), and Eℓ Mosco converges to a Dirichlet form E . But, as proven in [ACT21,
Theorem 8.1], the limit distance d is a Finsler metric: if d coincided with dE , then d
would be associated to a quadratic form, which is impossible for a Finsler metric unless
it is a Riemannian metric.
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3.6.3 Energy convergence for Kato limits

In this section we illustrate two ways of proving the convergence of energy stated in
Theorem 3.7, that is, of showing that the Dirichlet energy in the limit coincides with the
Cheeger energy associated to the limit distance. The first method is an application of
the Li-Yau inequality (LY) and of heat kernel convergence; the second relies on Theorem
3.10 and RCD theory.

Energy convergence via Li-Yau inequality

Our first proof of energy convergence is contained in [CMT24, Section 4]: we briefly
sketch its main arguments and refer to [CMT24, Section 4] for the details. The first step
consists in showing that for a Kato limit (X, d, µ, E , o), where the Dirichlet form E is
well defined thanks to Theorem 3.14, the distances d and dE are the same.

Proposition 3.15. Let (X, d, µ, o, E) be a Kato limit with f(T ) ≤ 1
16n . Then d = dE .

Sketch of the proof. Let {(Mα, dα, µα, oα, Eα)}α∈A be a sequence of smooth manifolds
satisfying the Kato bound and converging to (X, d, µ, o, E). We denote by Hα and H
the heat kernels of Mα and of (X, dE , µ, E) respectively. We fix t > 0, x, y ∈ X and
{xα, yα}α∈A sequences of points in Mα converging respectively to x, y ∈ X. The idea of
the proof is to use the Li-Yau inequality (LY) to show that for any t ∈ (0, T ), η ∈ (0, 1)

log
(
Hα(ηt, xα, yα)
Hα(t, xα, yα)

)
≤ ne

2 log
(1
η

)
+ d2

α(xα, yα)
4(1 − η)t e

5f(t). (3.12)

Thanks to heat kernel convergence and the convergence of the distances dα to d, we
obtain the analogue inequality on X: for all x, y ∈ X, t ∈ (0, T ), η ∈ (0, 1)

log
(
H(ηt, x, y)
H(t, x, y)

)
≤ ne

2 log
(1
η

)
+ d2(x, y)

4(1 − η)te
5f(t). (3.13)

We use Varadhan’s formula

d2
E(x, y) = lim

t→0
(−4t logH(t, x, y)), (3.14)

multiply (3.13) by −4t and pass to the limit as t goes to 0 to obtain for any η ∈ (0, 1)

d2
E(x, y) ≤ d(x, y)2

1 − η
.

Passing to the limit as η goes to zero we get dE ≤ d. By Theorem 3.14 we know dE ≥ d,
then the desired equality follows.

We explain how (3.12) is obtained from the Li-Yau inequality. Let u be a positive
solution of the heat equation onMα for α fixed, t ∈ (0, T ], s ∈ (0, t) and γ : [0, t−s] → Mα

a minimizing geodesic from yα to xα. Define for any τ ∈ [0, t− s]

ϕ(τ) = log u(t− τ, γ(τ)),
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and differentiate in τ :

d
dτ ϕ(τ) = − 1

u

∂u

∂t
+ ⟨ d

dτ γ(τ), d log u⟩

≤ ne5kt−τ

2(t− τ) − e−5kt
|du|2

u2 + ⟨ d
dτ γ(τ), d log u⟩

= ne5kt−τ

2(t− τ) −
∣∣∣∣∣e− 5

2 ktd log u− e
5
2 kt

2
d
dτ γ(τ)

∣∣∣∣∣
2

+ e5kt

4

∣∣∣∣ d
dτ γ(τ)

∣∣∣∣2
≤ ne5kt−τ

2(t− τ) + e5ktd2
α(xα, yα)

4(t− s)2 ,

wherein the first inequality we used (LY). We then integrate between 0 and t − s and
obtain:

log
(
u(s, x)
u(t, y)

)
≤ n

2 e log
(
t

s

)
+ e5f(t)d2

α(xα, yα)
4(t− s) ,

where we used kt(Mα, gα) ≤ f(t) ≤ 1
16n for any t ∈ (0, T ] and α ∈ A. Choosing s = ηt

and u(τ, z) = Hα(τ, xα, z) in the previous inequality directly leads to (3.12).

Theorem 3.16. Let (X, d, µ, o, E) be a Kato limit. Then Chd = E.

Sketch of the proof. We use the following result of Koskela, Shanmugalingam and Zhou
[KSZ14, Theorem 4.1]: let (X, dE , µ, E) be a PI Dirichlet space and assume that there
exists a locally bounded function h : [0, T ] → [0,+∞) such that

lim inf
t→0

h(t) = 1,

and for all u ∈ D(E), φ ∈ D(E) ∩ Cc(X), φ ≥ 0 we have
ˆ

X
φ dΓ(Ptu) ≤ h(t)

ˆ
X
PtφdΓ(u). (3.15)

Then ChdE = E . By the previous proposition we know that Chd = ChdE : our goal is
therefore to show the existence of a function h such that (3.15) holds.

Denote by {(Mα, dα, µα, oα, Eα)}α∈A a sequence converging to (X, d, µ, o, E). Let
(Pα

t )t>0 the heat semi-group of Mα and {uα}α, {φα}α two sequences such that uα ∈
D(Eα), φα ≥ 0 and φα ∈ D(Eα) ∩ Cc(Mα), uα converges in energy to u and φα converges
uniformly to φ (see Section 1.4.2 in [CMT24] for the precise definitions of convergence for
functions). By choosing the appropriate gauging function and using Bochner inequality,
we showed that ˆ

Mα

φα|dPα
t uα|2 dvgα ≤ e4f(t)

ˆ
Mα

Pα
t φα|duα|2 dvgα ,

see Lemmas 4.3 and 4.4 and Corollary 4.5 in [CMT24]. By passing to the limit in the
previous inequality we are able to obtain (3.15) with h(t) = e4f(t), thus to conclude.

52



3.6. Strategies of chosen proofs

Energy convergence via Theorem 3.10

Energy convergence for Kato limits can also be deduced using the second point in Theo-
rem 3.10. Consider a Kato limit (X, d, µ, o) of manifolds {(Mα, gα, µα, oα)}α∈A, endowed
with the Dirichlet energy E obtained as limit of the energies Eα.

By Theorem 3.10, for any t ∈ (0, T ] and α ∈ A there exists a function uα,t such that

0 ≤ uα,t ≤ 4kt(Mα, gα),

and for gα,t = e2uα,tgα, µα,t = e2uα,tµα the weighted manifold (Mα, dgα,t , µα,t) is an
RCD(−4kt(Mα, gα)/t, n+ 4(n− 2)2kt(Mα, gα)) space. Thanks to the Kato bound, each
weighted manifold is actually an RCD(−4f(t)/t, n+ 4(n− 2)2f(t)) space. Therefore, we
can apply pre-compactness of RCD spaces to deduce that X is endowed with a distance dt

and measure µt such that (Mα, dgα,t , µα,t, oα) converges to (X, dt, µt, o), and (X, dt, µt)
is an RCD(−4f(t)/t, n + 4(n − 2)2f(t)) space. Moreover, by energy convergence for
RCD spaces, the Dirichlet energies Eα,t associated to gα,t and µα,t Mosco converge to
the Cheeger energy Chdt , whose intrinsic distance coincides eventually with dt. It is not
difficult to see that our conformal change does not change the Dirichlet energies: we
have Eα = Eα,t and thus E = Chdt . Thanks to Theorem 3.4 we also know that

d ≤ dt ≤ e4f(t)d and µ ≤ µt ≤ e4f(t)µ.

Since f(t) tends to zero as t goes to zero, from the inequality on the distances we deduce
that dt converges to d as t goes to zero. From the inequality on the measures, the
definition of the intrinsic distance and the fact that E = Chdt , for t small enough we
obtain that

dE ≤ dt ≤ (1 + ε(t))dE ,

where ε(t) tends to zero as t goes to zero. As a consequence, dt tends to the intrinsic
distance dE associated to E . Therefore, the limit distance d coincides with the intrinsic
distance dE , and the limit Dirichlet energy E is equal to the Cheeger energy Chd.

3.6.4 Strong Kato bound, monotone quantities and regularity

In this section we focus on complete manifolds that satisfy a strong Kato bound, and we
explain the main ideas and tools that lead to prove two structure results for non-collapsed
strong Kato limits: tangent cones are metric cones and Reifenberg regularity. Thanks to
the almost monotonicity result for the volume ratio that we proved in Theorem 3.11, we
know that on a non-collapsed strong Kato limit the volume density is well-defined. This
could allow us to use similar arguments to the ones of Cheeger-Colding theory in order to
obtain regularity results. Here we prefer to underline the novelty and differences of our
approach with respect to the previous literature. The main idea consists in introducing
new monotone quantities based on the heat kernel, which are globally defined, instead
of relying on the volume ratio.

We refer to [CMT24] and [CMT22]: even if in those papers we restricted ourselves
to closed manifolds, thanks to the existence of good cut-off functions under a Dynkin
bound, all of the following results hold and are stated here for complete manifolds.
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Monotone quantities

Monotone quantities and non-negative Ricci curvature. When dealing with manifolds
(Mn, g) such that Ricg ≥ 0, there are several well-known monotone quantities.

• The volume ratio, defined for any x ∈ M and r > 0 by

V(x, r) = volg(B(x, r))
ωnrn

,

where ωn is the volume of the unit ball in the Euclidean space Rn. The Bishop-
Gromov inequality ensures that the map r → V(x, r) is monotone non-increasing
for all x ∈ M .

• The on-diagonal heat kernel ratio, defined for any x ∈ M and t > 0 by

H(x, t) = (4πt)
n
2H(t, x, x).

Observe that (4πt)
n
2 is the inverse of the on-diagonal heat kernel on Rn. Thanks

to the Li-Yau inequality (LY0), it is easy to show that the map t 7→ H(t, x) is
non-decreasing for any x ∈ M .

• The Huisken entropy, defined for any x ∈ M and s > 0 by

Θx(s) = 1
(4πs)

n
2

ˆ
M

exp
(

−dg(x, y)2

4s

)
dvg(y),

which has been shown to be monotone non-increasing in s by W. Jiang and
A. Naber [JN21].

In [CMT24] we introduced a new family of monotone quantities depending on the heat
kernel. Let (Mn, g) be a complete manifold with Ricg ≥ 0 and introduce the function
U : (0,+∞) ×M ×M → (0,+∞) such that for any t > 0 and x, y ∈ M

H(t, x, y) =
exp

(
−U(t,x,y)

4t

)
(4πt)

n
2

.

Now fix x ∈ M , s, t > 0 and define

θx(s, t) =
ˆ

M

exp
(
−U(t,x,y)

4s

)
(4πs)

n
2

dvg(y).

Observe that by Varadhan’s formula

lim
t→0

U(t, x, y) = d(x, y)2,
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thus for any x ∈ M , when t tends to 0 we obtain θx(s, 0) = Θ(x, s). Consider the map
λ 7→ θx(λs, λt). Whenever s = t it is constant equal to one, because of the stochastic
completeness of the manifold:

θx(λt, λt) =
ˆ

M
H(λt, x, y) dvg(y) = 1.

Let t > 0. Then we have

(4πt)
n
2H(t, x, x) = (4πt)

n
2

ˆ
M
H

(
t

2 , x, y
)2

dvg(y)

=
ˆ

M
(πt)− n

2 exp
(

−U(t/2, x, y)
t

)
dvg

= θx

(
t

4 ,
t

2

)
,

where we used the semi-group law in the first equality and the definition of U in the
second. As a consequence, for these choices of t and s we obtain

λ 7→ θx

(
λ
t

4 , λ
t

2

)
= (4πλt)

n
2H(λt, x, x), (3.16)

and this map in non-decreasing in λ.
Let s > 0 and t = 0. Then by Cavalieri’s principle and the appropriate change of

variables we have

θx(s, 0) = 1
(4πs)

n
2

ˆ
M
e− d(x,y)2

4s dvg(y)

= 1
(4πs)

n
2

ˆ +∞

0
volg({e− d2(x,·)

4s > τ}) dτ

= 1
(4πs)

n
2

ˆ 1

0
volg(B(x,

√
−4s log(τ)) dτ

= 1
2

1
(4πs)

n
2

ˆ +∞

0
volg(B(x, ρ

√
s))e− ρ2

4 ρdρ

= ωn

2(4π)
n
2

ˆ +∞

0

volg(B(x, ρ
√
s))

ωn(ρ
√
s)n

e− ρ2
4 ρn+1 dρ

= ωn

2(4π)
n
2

ˆ +∞

0
V(x, ρ

√
s)e− ρ2

4 ρn+1 dρ.

Therefore, since the volume ratio in monotone non-increasing with respect to the radius,
the map λ 7→ θx(λs, 0) is monotone non-increasing as well. In [CMT24] we proved that
the map λ 7→ θx(λt, λs) can be seen as an interpolation between the monotonicity of
the on-diagonal heat kernel ratio and the one of the volume ratio. More precisely, we
obtained the following.
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Proposition 3.17. Let (Mn, g) be a complete manifold with Ricg ≥ 0 and x ∈ M . Then
the map λ 7→ θx(λs, λt) is monotone non-increasing for s ≥ t, monotone non-decreasing
for s ≤ t.

The idea of the proof is to use Li-Yau inequality (LY0) and the properties of
U coming from the ones of the heat kernel, in order to show that the derivative of
λ 7→ θx(λs, λt) has the same sign as t− s.

Monotone quantities depending on the Kato constant. In Corollary 5.10 of [CMT24] we
used the Li-Yau inequality in order to show that if on a closed manifold (Mn, g) we have
for some T > 0

kT (Mn, g) ≤ 1
16n,

ˆ T

0

√
kτ (Mn, g)

τ
dτ ≤ Λ < +∞

then there exists a function F tending to 1 as λ tends to 0 such that the map

λ 7→ θx(λs, λt)F (λ),

is monotone non-increasing if t ≤ s and non-decreasing otherwise. Thanks to [CMT23a]
and the Li-Yau inequality (LY), we can improve this result to obtain:

Theorem 3.18. Let (Mn, g) be a complete manifold such that

kT (Mn, g) ≤ 1
16n, ϕ(t) =

ˆ t

0

kτ (Mn, g)
τ

dτ ≤ Λ < +∞.

Then there exists a constant cn and for any s, t > 0 there exists λ = λ(s, t,Λ, n) such
that the map

λ ∈ [0, λ] 7→ θx(λs, λt) exp
(
cnϕ(τ)

(
t

s
− s

t

))
(3.17)

is monotone non-increasing if t ≤ s, non-decreasing if t ≥ s.

With respect to the original statement in [CMT24], we include here complete mani-
folds and we do not have to consider the square root of the Kato constant in the definition
of ϕ. The key point in the proof of Theorem 3.18 is to show the appropriate differential
inequality, as in the case of non-negative Ricci curvature. We set Γτ = e5kτ (Mn,g) − 1
and prove that for any t > 0, τ ∈ (0, t) and s ∈ (0, t/2Γτ ) we have

d
dλθx + nΓτ

(
t

s
− s

t

)
θx,

has the same sign as t − s (see [CMT24, Proposition 5.8]). The fact that Γτ appears
in the second summand is the reason why the function ϕ appears in the monotonicity
formula (3.17), see the proof of [CMT24, Corollary 5.10] for the details.

A direct consequence of the previous theorem and of the relation (3.16) between θx

and H is the following monotonicity for the on-diagonal heat kernel ratio.
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Corollary 3.19. Let (Mn, g) be a complete manifold such that

kT (Mn, g) ≤ 1
16n, ϕ(t) =

ˆ t

0

kτ (Mn, g)
τ

dτ ≤ Λ < +∞.

Then there exist constants η ∈ (0, 1), cn > 0 such that the map

t ∈ (0, ηT ] 7→ exp(cnϕ(t))H(t, x) (3.18)

is monotone non-decreasing.

Monotone quantities on non-collapsed strong Kato limits. We first observe that Θ and θ
are well-defined on PI-Dirichlet spaces, and continuous respectively in measured Gromov-
Hausdorff convergence and Mosco-Gromov-Hausdorff convergence (see Sections 5.1 and
5.2 in [CMT24]). Moreover, heat-kernel bounds on PI-Dirichlet spaces imply bounds on
Θ and θ. In particular, the bounds on θx depend on the measure of balls around x, see
[CMT24, Remark 5.6]. Kato limits being PI-Dirichlet spaces, all these properties apply.
We would also like to obtain analogue monotone quantities as the ones in Theorem 3.18
and Corollary 3.19: yet, observe that the Kato bound is not enough to obtain this kind
of result, because of the assumption on the function ϕ in Theorem 3.18. This was our
main motivation to introduce strong Kato bounds. Indeed, when assuming a strong Kato
bound (SK) on a sequence of complete manifolds {(Mα, gα, oα)}α∈A satisfying (Dyn),
we can actually replace each function ϕα in (3.17) and (3.18) by

Φ(t) =
ˆ t

0

f(s)
s

ds,

to obtain the analogue statements on each manifold Mα of the sequence. Moreover, the
non-collapsing assumption (NC) and the bounds on θx guarantees that for any point in
the limit θx is finite and does not vanish. As a consequence, we obtain:

Theorem 3.20. Let (X, d, µ, o) be a non-collapsed strong Kato limit. Then there exist
a positive constant η and a positive increasing function ϕ : (0, ηT ] → R tending to zero
in zero and such that for any x ∈ X the map

t ∈ (0, ηT ] 7→ exp(ϕ(t))H(t, x) (3.19)

is non-decreasing.

This allow to define an on-diagonal heat kernel density for each point x ∈ X as
follows:

θ(x) = lim
t→0

H(t, x) ∈ [1,+∞). (3.20)

The on-diagonal heat kernel density can be shown to be equal to the inverse of the
volume density, defined by

ρ(x) = lim
r→0

µ(B(x, r))
ωnrn

∈ (0, 1]. (3.21)
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Observe that, while ρ is a local quantity, θ depends on the heat kernel, thus it is a global
quantity. In [CMT24] we used the monotonicity of θx to prove that tangent cones of
non-collapsed strong Kato limits are metric cones, then the properties of the volume
density ρ in order to show volume continuity and stratification as stated in Theorem
3.8. In [CMT22], we used the properties of the on-diagonal heat kernel ratio and of θ
to get Reifenberg regularity, the last point in Theorem 3.8. In the following, we briefly
sketch the proofs of “tangent cones are metric cones” and of Riefenberg regularity.

Tangent cones are metric cones

For the details of the following proof we refer to the proof of Theorem 5.11 in [CMT24].
We recall two properties of Θx and θx (see Lemma 5.3 and Proposition 5.5 in [CMT24]):

1. On a metric measure space (X, d, x), Θx is constant equal to c > 0 if and only if
for any r > 0 we have µ(B(x, r)) = cωnr

n.

2. On a PI-Dirichlet space (X, dE , µ, E) we have for any x ∈ X and s > 0

Θx(s) = lim
t→0

θx(s, t).

In order to show that a tangent cone (Y, dY , µY , x) of a non-collapsed strong Kato limit
(X, d, µ, o) is a metric cone for any x ∈ X, it is enough to prove that ΘY

x is constant.
Indeed, this implies that for any r > 0 we have µY (B(x, r)) = ΘY

x (1)ωnr
n and, since

(Y, dY , µY , x) is a weakly non-collapsed RCD(0, n) space, we can apply a result of De
Philippis and Gigli [DPG18, Theorem 1.1] to conclude that it is a metric measure cone.
To show that ΘY

x is constant, we start with some observations. For any x ∈ X, there
exists a sequence xα ∈ Mα converging to x and for any t ∈ (0, T ], s > 0 the continuity
of θx with respect to Gromov-Hausdorff convergence implies that

θX
x (s, t) = lim

α
θMα

xα
(s, t).

For s and t fixed, Theorem 3.18 ensures that there exist constants ε and k such that the
maps

λ ∈ (0, ε] 7→ θMα
xα

(λs, λt) exp(kϕ(λt)),
are monotone, so the same is true for

λ ∈ (0, ε] 7→ θX
x (λs, λt) exp(kϕ(λt)).

Then we can define the limit of this map as λ tends to 0, denote it

ϑx(s, t) = lim
λ→0

θX
x (λs, λt).

Because of non-collapsing and heat-kernel bounds, this limit is finite and non-vanishing.
Moreover, by construction the map (s, t) 7→ ϑx(s, t) is 0-homogeneous. We show that on
a tangent cone (Y, dY , µY , x) at x we have for any s, t > 0

θY
x (s, t) = ϑx(s, t).
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This is simply due to the fact that Y is the limit of rescalings of X, to the rescaling law
for the heat kernel and the continuity of θY

x . As a consequence, the map (s, t) 7→ θY
x (s, t)

is 0-homogenous. Since
ΘY

x (s) = lim
t→0

θY
x (s, t),

the map s 7→ ΘY
x (s) is also 0-homogenous. Therefore, it is constant, and we can conclude

that (Y, dY , µY , x) is a metric measure cone.

Reifenberg regularity

A consequence of [CMT24, CMT22] is that the regular set of a non-collapsed strong
Kato limit (X, d, µ, x)

R = {x ∈ X s.t. there is a unique tangent cone (Rn, de,Hn, 0)},

coincides with the set in which the on-diagonal heat kernel density θ, or the volume
density ρ, are constant equal to 1 (see for example [CMT22, Proposition 5.5]̨). The
rough idea to prove Reifenberg regularity is that if θ(x), or ρ(x), are close enough to 1,
then it is possible to construct bi-Hölder charts into Rn around x. There are two key
steps in order to prove this fact.

1. First one shows the so-called Reifenberg property of balls: if θ(x) or ρ(x) are
close enough to 1, then all balls B(y, r) contained in a unit ball around x are
Gromov-Hausdorff close to a Euclidean ball of radius r.

2. Then the intrinsic Reifenberg theorem of J. Cheeger and T. H. Colding [CC97,
Theorem A.1.1] implies the existence of bi-Hölder charts.

In the case of Ricci limits and using the volume density, J. Cheeger, W. Jiang and
A. Naber gave an alternative proof of the latter point, based on a Transformation The-
orem, see Theorems 7.2 and 7.10 and [CJN21].

In the case of non-collapsed strong Kato limits, we can use either the classical
approach based on the volume density ρ, or show the Reifenberg property of balls
based on θ. In [CMT22] we followed this path: we used the almost monotonicity of the
on-diagonal heat kernel, Li-Yau inequality, and a rigidity result for the heat kernel that
was proven in [CT22]. Because of the novelty of this second approach in the literature
of Gromov-Hausdorff limits of manifolds, we chose to present it here.

Reifenberg regularity of balls. We are going to sketch the proof of the following result,
that is detailed in [CMT22, Section 5].

Theorem 3.21. For any ε > 0 there exists δ > 0 such that if (X, d, o) is a non-collapsed
strong Kato limit and for some x ∈ X, t ∈ (0, δT ) we have

H(t, x) ≤ 1 + δ,

then for any y ∈ B(x,
√
t) and s ∈ (0,

√
t] we have

dGH(B(y, s),Bn(0, s)) ≤ εs.
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Theorem 3.21 is a direct consequence of the corresponding statement for manifolds.
For the sake of convenience, we introduce the following notation.

Definition 3.8. Let n ∈ N, n ≥ 3, T > 0 and f : (0, T ] → R a non-negative, non-
decreasing function such that

f(T ) ≤ 1
16n, lim

t→0
f(t) = 0,

ˆ T

0

f(s)
s

ds ≤ Λ < +∞.

We denote by SK(n, f) the set of isometry classes of n-dimensional complete Riemannian
manifolds (Mn, g) such that for all t ∈ (0, T ]

kt(Mn, g) ≤ f(t) (3.22)

For v > 0, we denote by SK(n, f, v) the set of isometry classes of manifolds in SK(n, f)
such that for some o ∈ M volg(B(o,

√
T )) ≥ v.

With this notation, a non-collapsed strong Kato limit is an element of the closure
SK(n, f, v) with respect to Gromov-Hausdorff topology.

Theorem 3.22. For any ε > 0 there exists ν > 0 depending on f, n, ε such that if
(Mn, g) belongs to SK(n, f) and for some x ∈ M , t ∈ (0, T ] we have

kt(M, g) ≤ ν, H(x, t) ≤ 1 + ν,

then for any y ∈ B(x,
√
t) and s > 0 such that B(y, s) ⊂ B(x,

√
t) we have

dGH(B(y, s),Bn(0, s)) ≤ εs. (3.23)

The key point is to prove (3.23) for the ball B(x,
√
t), that is:

dGH(B(x,
√
t),Bn(0,

√
t)) ≤ ε

√
t. (3.24)

We briefly explain why. By heat kernel convergence, if H(x, t) is close to one, then
for y ∈ B(x,

√
t) the quantity H(y, t) is close to 1 as well [CMT22, Corollary 5.11].

Moreover, an easy consequence of Corollary 3.19 is that for any δ ∈ (0, 1) one can
choose ν small enough such that if kt(M, g) ≤ ν, then for any y ∈ M and s ∈ (0, t] we
have H(y, s) ≤ H(y, t)(1 + δ), see [CMT22, Lemma 5.7]. Theorem 3.22 then follows by
combining this information and applying (3.24) with a different center and radius. We
are then left to prove (3.24) under the assumptions of Theorem 3.22.

Sketch of the proof of (3.24). We refer to [CMT22, Theorem 5.9] for the details of the
proof, which goes by contradiction. There exists ε0 > 0 such that for any sequence {δℓ}
tending to zero we can find a sequence of manifolds (Mℓ, gℓ) and points xℓ ∈ Mℓ, such
that up to re-scaling we have

k1(Mℓ, gℓ) ≤ δℓ, H(xℓ, 1) < 1 + δℓ,
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and
dGH(B(xℓ, 1),Bn(0, 1)) ≥ ε0. (3.25)

It is possible to show that an upper bound on H(1, xℓ) implies a lower bound v(n)
only depending on n on the volume of the ball B(xℓ, 1). As a consequence, for any ℓ the
pointed manifold (Mℓ, gℓ, xℓ) belongs to SK(n, f, v(n)) and we can extract a subsequence
converging to a non-collapsed strong Kato limit (X, d, x). We also have H(1, x) ≤ 1, but
since H(1, x) ≥ 1 we get H(1, x) = 1. Because of (3.25), we have

dGH(B(x, 1),Bn(0, 1)) > ε0.

We aim to contradict the latter inequality and show that (X, d) is isometric to the
Euclidean space (Rn, de). For that, we prove that the heat kernel H of (X, d,Hn,Ch) is
Euclidean, that is for any z, y ∈ X and t > 0

H(t, z, y) = (4πt)− n
2 exp

(
−d(z, y)2

4t

)
. (3.26)

Theorem 1.1 of [CT22] then ensures that (X, d) is isometric to (Rn, de). Recall Varad-
han’s formula:

d(x, y)2 = lim
σ→0

U(σ, x, y),

where U(σ, x, y) = −4σ log((4πσ)
n
2H(σ, x, y)). We aim to show that for any s ∈ (0, 1]

and y ∈ X we have
U(s/4, x, y) = U(s/2, x, y), (3.27)

so that
U(s/2, x, y) = lim

σ→0
U(σ, x, y) = d(x, y)2.

This implies (3.26) for x ∈ X, for any s ∈ (0, 1] and y ∈ X. It is not difficult to
extend this result to all s > 0 and y, z ∈ X by using the monotonicity of H and the
appropriate estimate on the derivatives of the heat kernel (see Step 3 in the proof of
[CMT22, Theorem 5.9]). In order to prove (3.27), we introduce:

ϕx(s, y) = (4πs)
n
2H2(s/2, x, y).

A simple computation shows that (3.27) is equivalent to

ϕx(s, y) = H(s/4, x, y). (3.28)

Let L be the self-adjoint operator associated to the Cheeger energy of (X, d,Hn). By
the definition of the heat kernel, the function (s, y) 7→ H(s/4, x, y) is the unique solution
to the equation (

4 ∂
∂t

+ L

)
u = 0,

satisfying
lim
s→0

u(s, ·) = δx(·).
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We observe that heat kernel bounds and non-collapsing imply respectively that for any
s > 0 and y ∈ X \ {x} we have:

lim
d(x,y)→∞

ϕx(s, y) = 0, lim
s→0

ϕx(s, y) = 0.

Moreover, a simple computation ensures that for any s > 0.ˆ
X
ϕx(s, y) dHn(y) = H(s, x).

We know that H(1, x) = 1. Besides, by using [CMT22, Lemma 5.7] and the fact that
the Kato constants of the converging manifolds tend to 0, we obtain that the map
s → H(x, s) is monotone non-decreasing. Then for any s ∈ (0, 1] we have H(s, x) = 1
and, as a consequence, for any s ∈ (0, 1]ˆ

X
ϕx(s, y) dHn(y) = 1.

Therefore,
lim
s→0

ϕx(s, ·) = δx(·).

Moreover, the classical Li-Yau inequality (LY0) holds on (X, d,Hn) (see Proposition 2.9
and Remark 2.10 in [CMT22]). Therefore, with some computations, we also obtain(

4 ∂
∂t

+ L

)
ϕ ≥ 0.

But we have ˆ
X
ϕx(s, y) dHn(y) =

ˆ
X
H(s/4, x, y) dHn(y) = 1,

thus we get (3.28), which leads to (3.27) and to the conclusion of the proof.

Existence of bi-Hölder charts. In [CMT22] we gave a quantitative version of Cheeger-
Colding’s Intrinsic Reifenberg theorem that can be stated as follows and that, together
with a covering argument, directly leads to the last point in Theorem 3.8.

Theorem 3.23. Let (X, d, o) be a non-collapsed strong Kato limit. For any α ∈ (0, 1)
there exists δ > 0 such that for any x ∈ X satisfying θ(x) < 1+ δ there exist r ∈ (0,

√
T )

and a homeomorphism u : B(x, r) → u(B(x, r)) ⊂ Rn such that for any y, z ∈ B(x, r)
we have

αr1− 1
α d(y, z)

1
α ≤ |u(y) − u(z)| ≤ 1

α
d(y, z)αr1−α.

Instead of giving a sketch of the proof, in this section we aim to illustrate the tools
that we used and the main differences with the existing literature for Ricci limits. For
the details, we refer the interested reader to Sections 3 and 5.4 of [CMT22].

A first tool is given by harmonic almost splittings. These maps were introduced in
the study of Ricci limits and extensively used both when dealing with limits of smooth
manifolds and in the context of RCD spaces, see for instance [CN15, CJN21, Bam20,
BPS21]. We refer to [CMT22, Definition 3.3] for the precise definition of a harmonic
splitting map on a Kato limit, and focus on the definition on manifolds.
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Definition 3.9. Let (Mn, g) be a complete manifold, x ∈ M , ε, r > 0 and k ∈ N.
A harmonic (k, ε)-almost splitting is a harmonic map u : B(x, r) → Rk such that
∥du∥L∞(B(x,r) ≤ 2 and for the Gram matrix Gu defined by (Gu)i,j = ⟨dui, duj⟩ we
have  

B(x,r)
∥Gu − Idk∥ d volg < ε, (3.29)

where Idk is the identity k × k-matrix and the norm is defined by

∥A∥2 = sup{t(Aξ)Aξ, ξ ∈ Rk such that tξξ = 1}.

Whenever k = n, harmonic almost splittings can be considered as “almost harmonic
charts”, because, in average, their Gram matrix is close to the identity. Observe that
the definition of an almost splitting often includes a condition on the Hessian:

r2
 

B(x,r)
|∇du|2 d volg < ε2.

However, under a lower Ricci bound or a Kato bound, this inequality can be deduced
from (3.29) by using Bochner formula: see [CMT24, Proposition 3.5].

The importance of harmonic almost splitting maps is that, roughly speaking, their
existence is equivalent to Gromov-Hausdorff closeness to a Euclidean ball: GH-closeness
to a ball in Rk implies the existence of a harmonic almost splitting in Rk; under the
appropriate assumptions, the existence of a harmonic almost splitting in Rk implies GH
closeness to a Euclidean ball, see Section 3.2 and Corollary 5.13 in [CMT22]. In order to
prove this under a Kato bound, we used the appropriate results for convergence in energy
of harmonic functions on converging sequences of PI-Dirichlet spaces: for the details we
refer to the appendices of [CMT24, CMT22]. We point out that all of these convergence
results do not depend on any curvature condition, while previous convergence results
for harmonic functions were obtained in the more restrictive setting of RCD spaces, for
instance [AH17, AH18].

The key point in proving Theorem 3.23 is to show that whenever θ(x) is close to
1, harmonic almost splitting are bi-Hölder homeomorphisms. It is actually enough to
prove this on manifolds, that is, to show:

Theorem 3.24. There exists ε0 ∈ (0, 1) depending on f, n such that for any ε ∈ (0, ε0)
and η ∈ (0, 1) there exists δ > 0 depending on f, n, ε, η such that if (Mn, g) ∈ SK(n, f),
x ∈ M and t ∈ (0,

√
T ] satisfy

kt(Mn, g) < δ, H(x, t) ≤ 1 + δ,

then any harmonic (n, δ)-almost splitting u : B(x,
√
t) → Rn with u(x) = 0 is a

diffeomorphism between B(x, (1 − η)
√
t) onto its image. Moreover, for any y, z ∈

B(x, (1 − η)
√
t) we have

(1 − ε)dg(y, z)1+ε

(
√
t)ε

≤ |u(y) − u(z)| ≤ (1 + ε)dg(y, z),
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As in the case of the proof of the Canonical Reifenberg Theorem of J. Cheeger,
W. Jiang and A. Naber [CJN21, Theorem 7.10], the previous statement is a consequence
of the Reifenberg regularity of balls given by Theorem 3.22, the properties of almost
splitting maps and a transformation theorem, see [CMT22, Theorem 5.14]. The rough
idea of the transformation theorem is the following. In general, a harmonic (k, ε)-almost
splitting u on a ball B(x, 1) is not a harmonic (k, ε)-almost splitting on balls of smaller
scale B(x, s) for s ∈ (0, 1), because of the average on balls in (3.29): one gets a worse
estimate with the volume of B(x, s) in the denominator. But under the appropriate
assumptions, one can find a transformation matrix Tx,s such that the map Tx,s ◦ u is
a harmonic (k, ε)-almost splitting on B(x, s). This property, together with a control
on the norm of Tx,s, allows to obtain the bi-Hölder regularity of u. In addition to the
ones of [CN15] and [CJN21], several versions of the transformation theorem have been
proven in the literature, for instance in the work of Q. S. Zhang and M. Zhu [ZZ19], in
the setting of manifolds with bounded Bakry-Émery tensor, or in the work of R. Bamler
[Bam20], which applies to the study of singularities of the Ricci flow with bounded scalar
curvature. In all of these articles, the proofs of the transformation theorem are done by
contradiction. For instance, in [CJN21], the transformation theorem for manifolds with
a Ricci lower bound relies on a precise spectral gap for limit cones, which improves the
previous work of C. Ketterer concerning RCD cones [Ket15] and implies a specific growth
for harmonic functions on cones. Contradicting the statement of the transformation
theorem leads to the existence of a harmonic linear splitting on balls of smaller size,
therefore to the conclusion.

The main difference with respect to the previous proofs, is that in our case, under
the weaker assumption of a strong Kato bound, we give a direct proof that only relies on
the cited above results for the convergence of harmonic functions (see [CMT22, Theorem
3.8]) and on elementary properties of harmonic maps in the Euclidean space. In partic-
ular, our proof does not depend on RCD theory. We refer to Section 5.4 in [CMT22] for
the details.

3.7 A geometric application
This section is devoted to presenting the main results of [CMT23b], which extend the
torus stability proven by J. Cheeger and T. H. Colding to manifolds with a small Kato
constant. Results of G. Carron [Car19] and C. Rose [Ros19] show that an analogue of
Bochner theorem holds in this setting:

Theorem 3.25. Let n ∈ N, there exists δ(n) > 0 such that if (Mn, g) is a closed
manifold of diameter D such that kD2(Mn, g) ≤ δ(n), then its first Betti number satisfies
b1(M) ≤ n.

In Proposition 4.1 and Remark 4.2 of [CMT23b] we also gave an alternative proof of
this result. G. Carron had raised the following question in [Car19] what happens if the
Kato constant is small enough and the first Betti number is equal to n? Our Theorem
3.9 answers this question by stating that the manifold is GH-close to a flat torus, and
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moreover diffeomorphic to a flat torus if a strong Kato bound holds. In the following,
we present the main ideas of our proof.

We took inspiration from the proof proposed by S. Gallot in his Bourbaki seminar
[Gal98] in the case of almost non-negative Ricci curvature: instead of using harmonic
approximations of Busemann functions as in Colding’s original argument, he showed
that the so-called Albanese map is a GH-almost isometry between the manifold and
a flat torus. The Intrinsic Reifenberg theorem of Cheeger and Colding then allows to
get the diffeomorphism. G. Gallot also conjectured that the Albanese map itself is a
diffeomorphism.

Let (Mn, g) be a closed manifold of diameter D and first Betti number equal to
n. We refer to [CMT23b, Section 4] for the precise definitions of the Albanese map
A : M → Rn/Γ and of its lift Â : M̂ → Rn, where M̂ is the Abelian covering of M .
As in S. Gallot’s proof, we showed that, if the Kato constant is small enough, then the
Albanese map A is a GH-almost isometry. To do so we rely on the following steps.

1. By using the appropriate estimates for harmonic forms [CMT23b, Proposition 4.1],
we prove that Â is a harmonic almost splitting on a ball of large radius whenever
the Kato constant of the manifold is small enough.

2. We show that if the Kato constant is small enough, a harmonic almost splitting
into Rn is actually a GH-almost isometry. Observe that this result is stated in
[CMT23b, Theorem 3.1] for closed manifolds, then extended to a normal covering of
residually finite deck transformation group. Thanks to [CMT23a], we can directly
prove [CMT23b, Theorem 3.1] for complete manifolds, and apply it to Â restricted
to the appropriate ball.

3. We then follow S. Gallot’s argument to show that A itself is a GH-almost isometry
(see [CMT23b, Section 5]).

In order to prove the existence of the diffeomorphism in case of a strong Kato bound,
we prove that A is the required diffeomorphism, answering S. Gallot’s question under
a weaker assumption with respect to almost non-negative Ricci curvature. This is an
application of our previous result on Reifenberg regularity. More precisely, we need two
main steps.

1. We show that there exists ô ∈ Â such that the on-diagonal heat kernel ratio
H(4D2, ô) is close to one;

2. We adapt the Reifenberg regularity result [CMT22, Theorem 5.19] to normal cov-
erings with residually finite deck transformation group to obtain that Â is a dif-
feomorphism from a large enough ball onto its image (see [CMT23b, Proposition
3.4]). Again, thanks to [CMT23a], we can now directly apply the new version of
Reifenberg regularity on complete manifolds stated in Theorem 3.22.

The fact that the Albanese map A is a diffeomorphism then follows because it is a local
diffeomorphism and a finite cover of the torus, and the torus is finitely cover by tori only.
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The usual Reifenberg results under almost non-negative Ricci curvature rely on a
control on the volume ratio. In our case, we use the on-diagonal heat kernel ratio
instead. In the following, we focus on briefly presenting the proof the first step, that
is, of the estimate on the on-diagonal heat kernel. We refer to the proof of [CMT23b,
Claim 6.1] for the details. The precise statement is given by:

Proposition 3.26. Let f : [0, 1] → R be a non-negative, non-decreasing function such
that ˆ 1

0

f(s)
s

ds < ∞.

Then there exist η(n, f) > 0 and δ(n, f) ∈ (0, η(n, f)] such that if (Mn, g) is a closed
manifold of diameter D satisfying

b1(M) = n, kD2(Mn, g) ≤ δ(n, f) and ktD2(Mn, g) ≤ f(t) for all t ∈ (0, 1],

and if M̂ is its Abelian covering with heat kernel Ĥ then there exists ô ∈ M̂ such that

Ĥ(4D2, ô) ≤ 1 + η(n, f),

where Ĥ(t, x) = (4πt)
n
2 Ĥ(t, x, x).

Sketch of the proof. We introduce on M̂ an almost Euclidean heat kernel, that is, for
any ε ∈ (0, 1), x, y ∈ M̂ and t > 0

Hε(t, x, y) := 1
(1 + ε)(4πt)n/2 exp

−(1 + ε)
d2

ĝ
(x, y)
4t

 . (3.30)

The desired result follows from the almost monotonicity of the on-diagonal heat
kernel combined with two estimates: an upper bound on Hε(t, x, y) for any t > 0,
x, y ∈ M̂ and a lower estimate on the integral over M̂ of Hε(t, ô, ·) for t ≥ D2. We
briefly explain how we obtained these two bounds.

Step 1. For any integer ℓ ≥ 4 we show that there exists δ1(n, f, ε, ℓ) such that if

kD2(Mn, g) ≤ δ ≤ δ1(n, f, ε, ℓ),

then for any x, y ∈ M̂ and t ∈ (0, ℓD2]

Hε(t, x, y) ≤ Ĥ(t, x, y). (3.31)

For this, we use the Li-Yau inequality (LY) and a similar argument to the one illustrated
in the proof of Proposition 3.15, where we obtained inequality (3.12). This leads to

1
(4πt)

n
2

exp
(

−F (ℓD2)
d2

ĝ(x, y)
4t

)
exp

(
−C(n)

ˆ ℓD2

0

ks(Mn, g)
s

ds
)

≤ Ĥ(t, x, y), (3.32)

where F is an explicit function depending on the Kato constant, that can be made smaller
than (1+ε) and C(n) is a dimensional constant. The strong Kato bound ensures that the
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second exponential term in the previous expression can be made smaller than (1 + ε)−1,
which leads to (3.31).

Step 2. We prove that for any ε ∈ (0, 1) and t > D2,

ˆ
M̂

Hε(t, ô, y) dνĝ(y) ≥ 1 − C(n) 3√δ
(1 + ε)

n
2 +1

(
1 − C(n)

(
D√
t

)n+2
− C(n)e− D2

5 3√
δt

)
.

The proof of this lower estimate relies on direct computations and a Euclidean lower
bound on the volume of a ball B(ô, r) for r ∈ [D, δ− 1

6D] due to the fact that Â is a
harmonic almost splitting. This volume bound was originally show in [CC00a, Theorem
1.2]: we noticed that the lower Ricci bound that is assumed in the original statement
is not needed in the proof, and reformulated the argument in the proof of [CMT23b,
Theorem 7.1].

3.8 Perspectives

We present below some future research directions related to our study of Kato limits.

Codimension 4

M. Anderson conjectured in the 1990s that the limit of a non-collapsed sequence of n-
manifolds for which the Ricci tensor is bounded has only codimension 4 singularities
of locally finite Hn−4-Hausdorff measure. The codimension 4 conjecture was proven
by J. Cheeger and A. Naber [CN15], and the locally finiteness of the singularities by
W. Jiang and A. Naber in [JN21]. It is natural to ask which kind of Kato or inte-
gral bound may lead to a similar result. In an on-going work with G. Carron and
D. Tewodrose, we will show that a Morrey control of the Ricci tensor, and not only
its negative part, implies that the limit space has only codimension 4 singularities. In
particular, we develop the tools that allow us to quantitatively show, with direct proofs,
some fundamental results: an epsilon-regularity theorem, a transformation theorem, the
appropriate estimates for harmonic functions.

Geometric applications of codimension 4

We plan to apply the above codimension 4 result to prove geometric consequences on
manifolds of dimension 4. It is well-known that the geometry and topology of a com-
pact, smooth 4-manifold (M, g) are related by the Chern-Gauss-Bonnet formula, which
involves on one side the Euler characteristic of the manifold, and on the other side the
integrals of the square norm of the Weyl tensor and of the Q-curvature. The Q-curvature
is a geometric quantity depending on the scalar and Ricci curvatures, that can be seen as
the conformal analogue of the Gauss curvature of surfaces. Thanks to [CGY03, CGZ20],
some rigidity results are known under the control of a conformal invariant: the ratio
β(M, [g]) between the integral of |Weyl|2 and the one of the Q-curvature. In particular,
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when M admits a metric of positive Yamabe constant and Q-curvature, [CGZ20] con-
jectures that if the infimum of β(M, [g]) over all conformal classes is equal to 4, then
the manifold is diffeomorphic to CP2. The proof of these rigidity results often consists
in choosing an appropriate conformal representative, using it as a starting point for the
Ricci flow, then extracting a converging sequence from this flow. For a sequence of
minimizing conformal classes, in collaboration with G. Carron we intend to choose in-
stead conformal representatives with positive scalar curvature and positive Q-curvature.
These metrics satisfy the appropriate Morrey control, which will allow us to apply our
results to obtain the convergence to a space with isolated conical singularities. We plan
to prove that the limit metric is Bach flat and that the singular set is empty. We will
then have to show the appropriate rigidity statement for Bach flat metrics.

Examples and pathological Kato limits

A natural question consists in finding explicit examples of sequences of manifolds sat-
isfying a Kato bound, but not an Lp bound. Together with D. Tewodrose, we intend
to build a metric on a manifold such that the Kato constant is bounded by a Kato
potential that does not belong to Lp. Besides, one can make sense of measures as Kato
potentials. We plan to build a singular Kato measure on a manifold and show that it
can be approached in Gromov-Hausdorff topology by smooth metrics satisfying a Kato
bound, giving an example of Kato limit.

In another line of study, we recovered a large part of Cheeger-Colding theory, but
do Kato limits have exactly the same regularity as Ricci limits? In a recent work,
we constructed an example of a 2-dimensional strong, non-collapsed Kato limit which,
in contrast with Ricci limits and RCD spaces, contains branching geodesics and is es-
sentially non-branching. This shows that there exist pathological Kato limits whose
regularity is worse than the one of Ricci limits. Together with D. Semola, we intend
to push this study further: we plan to show that there are examples for which tangent
cones do not vary Hölder continuously along a minimizing geodesic. This property has
been shown in [CN12] for Ricci limits, thanks to Abresch-Gromoll inequality and Lapla-
cian comparison. These tools are not available in the case of Kato bounds: this leads
to believe that the Hölder continuity of tangent cones can be a specific characteristic of
Ricci limits.
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